These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29041299)

  • 1. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics.
    Tong JK; Hsu WC; Huang Y; Boriskina SV; Chen G
    Sci Rep; 2015 Jun; 5():10661. PubMed ID: 26030711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics.
    Molesky S; Dewalt CJ; Jacob Z
    Opt Express; 2013 Jan; 21 Suppl 1():A96-110. PubMed ID: 23389280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of thermophotovoltaics for tolerance of parasitic absorption.
    Raman VK; Burger T; Lenert A
    Opt Express; 2019 Oct; 27(22):31757-31772. PubMed ID: 31684401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semitransparent thermophotovoltaics for efficient utilization of moderate temperature thermal radiation.
    Lenert A; Burger T; Roy-Layinde B; Lentz R; Berquist ZJ; Forrest SR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2215977119. PubMed ID: 36409918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures.
    Niu X; Qi D; Wang X; Cheng Y; Chen F; Li B; Gong R
    J Opt Soc Am A Opt Image Sci Vis; 2018 Nov; 35(11):1832-1838. PubMed ID: 30461841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management.
    Cao J; Liu X; Chang Q; Yang Z; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Dec; 22(48):28012-28020. PubMed ID: 33300901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions.
    Dyachenko PN; Molesky S; Petrov AY; Störmer M; Krekeler T; Lang S; Ritter M; Jacob Z; Eich M
    Nat Commun; 2016 Jun; 7():11809. PubMed ID: 27263653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions.
    Chirumamilla M; Krishnamurthy GV; Rout SS; Ritter M; Störmer M; Petrov AY; Eich M
    Sci Rep; 2020 Feb; 10(1):3605. PubMed ID: 32107414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities.
    Cho JW; Lee YJ; Kim JH; Hu R; Lee E; Kim SK
    ACS Nano; 2023 Jun; 17(11):10442-10451. PubMed ID: 37199547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous metal-based multilayers for selective thermal emitters.
    Shu S; Zheng L; Li H; Tsang CK; Shi L; Li YY
    Opt Lett; 2012 Dec; 37(23):4883-5. PubMed ID: 23202078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.