These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 29041306)
1. Mixed basis quantum key distribution with linear optics. Pavičić M; Benson O; Schell AW; Wolters J Opt Express; 2017 Oct; 25(20):23545-23555. PubMed ID: 29041306 [TBL] [Abstract][Full Text] [Related]
2. High-efficient entanglement distillation from photon loss and decoherence. Wang TJ; Wang C Opt Express; 2015 Nov; 23(24):31550-63. PubMed ID: 26698778 [TBL] [Abstract][Full Text] [Related]
3. A semiconductor source of triggered entangled photon pairs. Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947 [TBL] [Abstract][Full Text] [Related]
4. Single-Qubit Loss-Tolerant Quantum Position Verification Protocol Secure against Entangled Attackers. Escolà-Farràs L; Speelman F Phys Rev Lett; 2023 Oct; 131(14):140802. PubMed ID: 37862654 [TBL] [Abstract][Full Text] [Related]
5. Quantum communication without alignment using multiple-qubit single-photon states. Aolita L; Walborn SP Phys Rev Lett; 2007 Mar; 98(10):100501. PubMed ID: 17358518 [TBL] [Abstract][Full Text] [Related]
6. Beating the one-half limit of ancilla-free linear optics Bell measurements. Zaidi HA; van Loock P Phys Rev Lett; 2013 Jun; 110(26):260501. PubMed ID: 23848856 [TBL] [Abstract][Full Text] [Related]
8. Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Jiao XF; Zhou P; Lv SX; Wang ZY Sci Rep; 2019 Mar; 9(1):4663. PubMed ID: 30894566 [TBL] [Abstract][Full Text] [Related]
9. Hyperentanglement purification using imperfect spatial entanglement. Wang TJ; Mi SC; Wang C Opt Express; 2017 Feb; 25(3):2969-2982. PubMed ID: 29519013 [TBL] [Abstract][Full Text] [Related]
10. Splitting an Arbitrary Three-Qubit State via a Five-Qubit Cluster State and a Bell State. Xu G; Zhou T; Chen XB; Wang X Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327892 [TBL] [Abstract][Full Text] [Related]
11. Bell Nonlocality Is Not Sufficient for the Security of Standard Device-Independent Quantum Key Distribution Protocols. Farkas M; Balanzó-Juandó M; Łukanowski K; Kołodyński J; Acín A Phys Rev Lett; 2021 Jul; 127(5):050503. PubMed ID: 34397256 [TBL] [Abstract][Full Text] [Related]
12. Control and measurement of three-qubit entangled states. Roos CF; Riebe M; Häffner H; Hänsel W; Benhelm J; Lancaster GP; Becher C; Schmidt-Kaler F; Blatt R Science; 2004 Jun; 304(5676):1478-80. PubMed ID: 15178795 [TBL] [Abstract][Full Text] [Related]
13. Quantum key distribution with two-qubit quantum codes. Wang XB Phys Rev Lett; 2004 Feb; 92(7):077902. PubMed ID: 14995888 [TBL] [Abstract][Full Text] [Related]
14. Simple proof of security of the BB84 quantum key distribution protocol. Shor PW; Preskill J Phys Rev Lett; 2000 Jul; 85(2):441-4. PubMed ID: 10991303 [TBL] [Abstract][Full Text] [Related]
15. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Gisin N; Pironio S; Sangouard N Phys Rev Lett; 2010 Aug; 105(7):070501. PubMed ID: 20868025 [TBL] [Abstract][Full Text] [Related]
16. Randomness determines practical security of BB84 quantum key distribution. Li HW; Yin ZQ; Wang S; Qian YJ; Chen W; Guo GC; Han ZF Sci Rep; 2015 Nov; 5():16200. PubMed ID: 26552359 [TBL] [Abstract][Full Text] [Related]
17. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Silverstone JW; Santagati R; Bonneau D; Strain MJ; Sorel M; O'Brien JL; Thompson MG Nat Commun; 2015 Aug; 6():7948. PubMed ID: 26245267 [TBL] [Abstract][Full Text] [Related]