These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29041373)

  • 1. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling.
    Zhang C; Bai R; Gu X; Jin XR; Zhang YQ; Lee Y
    Opt Express; 2017 Oct; 25(20):24281-24289. PubMed ID: 29041373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-band unidirectional reflectionlessness at exceptional points in a plasmonic waveguide system based on near-field coupling between two resonators.
    Zhao F; Dai T; Zhang C; Bai R; Zhang YQ; Jin XR; Lee Y
    Nanotechnology; 2019 Jan; 30(4):045205. PubMed ID: 30499459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide.
    Wu N; Zhang C; Jin XR; Zhang YQ; Lee Y
    Opt Express; 2018 Feb; 26(4):3839-3849. PubMed ID: 29475362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-frequency unidirectional reflectionless propagation in a non-Hermitian graphene plasmonic waveguide-cavity coupling system.
    Yang G; Ding J; Wang Y
    Appl Opt; 2021 Jul; 60(19):5610-5614. PubMed ID: 34263852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system.
    He LY; Wang TJ; Gao YP; Cao C; Wang C
    Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points.
    Huang Y; Veronis G; Min C
    Opt Express; 2015 Nov; 23(23):29882-95. PubMed ID: 26698471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of a controlled unidirectional reflectionlessness by applying external voltage in an electro-optical plasmonic waveguide system.
    Yu L; Yang H; Liu YM; An C; Jin XR; Zhang YQ
    Opt Express; 2020 Aug; 28(16):24069-24078. PubMed ID: 32752392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide.
    Park H; Lee SY; Kim J; Lee B; Kim H
    Opt Express; 2015 Sep; 23(19):24464-74. PubMed ID: 26406651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple plasmon-induced transparencies in coupled-resonator systems.
    Chen J; Wang C; Zhang R; Xiao J
    Opt Lett; 2012 Dec; 37(24):5133-5. PubMed ID: 23258029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.
    Wang T; Zhang Y; Hong Z; Han Z
    Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency.
    Lu H; Liu X; Wang G; Mao D
    Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators.
    Naweed A
    Opt Express; 2015 May; 23(10):12573-81. PubMed ID: 26074512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light.
    Lai G; Liang R; Zhang Y; Bian Z; Yi L; Zhan G; Zhao R
    Opt Express; 2015 Mar; 23(5):6554-61. PubMed ID: 25836873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-coupled plasmon-induced transparency.
    Kekatpure RD; Barnard ES; Cai W; Brongersma ML
    Phys Rev Lett; 2010 Jun; 104(24):243902. PubMed ID: 20867303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.