These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29041388)

  • 1. Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range.
    Lamberti FR; Yao Q; Lanco L; Nguyen DT; Esmann M; Fainstein A; Sesin P; Anguiano S; Villafañe V; Bruchhausen A; Senellart P; Favero I; Lanzillotti-Kimura ND
    Opt Express; 2017 Oct; 25(20):24437-24447. PubMed ID: 29041388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micropillar Resonators for Optomechanics in the Extremely High 19-95-GHz Frequency Range.
    Anguiano S; Bruchhausen AE; Jusserand B; Favero I; Lamberti FR; Lanco L; Sagnes I; Lemaître A; Lanzillotti-Kimura ND; Senellart P; Fainstein A
    Phys Rev Lett; 2017 Jun; 118(26):263901. PubMed ID: 28707938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators.
    Lanzillotti-Kimura ND; Fainstein A; Jusserand B
    Ultrasonics; 2015 Feb; 56():80-9. PubMed ID: 24962289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond.
    Kipfstuhl L; Guldner F; Riedrich-Möller J; Becher C
    Opt Express; 2014 May; 22(10):12410-23. PubMed ID: 24921359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Song JD; Srinivasan K
    Nat Photonics; 2016 May; 10(5):346-352. PubMed ID: 27446234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator.
    Santos FG; Espinel YA; Luiz GO; Benevides RS; Wiederhecker GS; Mayer Alegre TP
    Opt Express; 2017 Jan; 25(2):508-529. PubMed ID: 28157943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanical crystal with bound states in the continuum.
    Liu S; Tong H; Fang K
    Nat Commun; 2022 Jun; 13(1):3187. PubMed ID: 35676298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs/AlAs Multiple Quantum Wells.
    Jusserand B; Poddubny AN; Poshakinskiy AV; Fainstein A; Lemaitre A
    Phys Rev Lett; 2015 Dec; 115(26):267402. PubMed ID: 26765028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz cavity optomechanics using a topological nanophononic superlattice.
    Chang H; Li Z; Lou W; Yao Q; Lai JM; Liu B; Ni H; Niu Z; Chang K; Zhang J
    Nanoscale; 2022 Sep; 14(36):13046-13052. PubMed ID: 36056707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brillouin Optomechanics in Coupled Silicon Microcavities.
    Espinel YA; Santos FG; Luiz GO; Alegre TP; Wiederhecker GS
    Sci Rep; 2017 Mar; 7():43423. PubMed ID: 28262814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.
    Okamoto H; Watanabe T; Ohta R; Onomitsu K; Gotoh H; Sogawa T; Yamaguchi H
    Nat Commun; 2015 Oct; 6():8478. PubMed ID: 26477487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequency optomechanical disk resonators in III-V ternary semiconductors.
    Guha B; Mariani S; Lemaître A; Combrié S; Leo G; Favero I
    Opt Express; 2017 Oct; 25(20):24639-24649. PubMed ID: 29041409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelastic coupling in gallium arsenide optomechanical disk resonators.
    Baker C; Hease W; Nguyen DT; Andronico A; Ducci S; Leo G; Favero I
    Opt Express; 2014 Jun; 22(12):14072-86. PubMed ID: 24977505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From cavity optomechanics to cavity-less exciton optomechanics: a review.
    Chang H; Zhang J
    Nanoscale; 2022 Nov; 14(45):16710-16730. PubMed ID: 36245359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High
    Joe G; Chia C; Pingault B; Haas M; Chalupnik M; Cornell E; Kuruma K; Machielse B; Sinclair N; Meesala S; Lončar M
    Nano Lett; 2024 Jun; 24(23):6831-6837. PubMed ID: 38815209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optomechanical interactions in two-dimensional Si and GaAs phoXonic cavities.
    El-Jallal S; Oudich M; Pennec Y; Djafari-Rouhani B; Makhoute A; Rolland Q; Dupont S; Gazalet J
    J Phys Condens Matter; 2014 Jan; 26(1):015005. PubMed ID: 24275077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-induced control of a pillar cavity-GaAs single quantum dot photon source.
    Yeo I; Kim D; Han IK; Song JD
    Sci Rep; 2019 Dec; 9(1):18564. PubMed ID: 31811212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anderson Photon-Phonon Colocalization in Certain Random Superlattices.
    Arregui G; Lanzillotti-Kimura ND; Sotomayor-Torres CM; García PD
    Phys Rev Lett; 2019 Feb; 122(4):043903. PubMed ID: 30768324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.