These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29041406)

  • 1. Optical fabrication and characterisation of SU-8 disk photonic waveguide heterostructure cavities.
    Nuttall LP; Brossard FSF; Lennon SA; Reid BPL; Wu J; Griffiths J; Taylor RA
    Opt Express; 2017 Oct; 25(20):24615-24622. PubMed ID: 29041406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities.
    Schatzl M; Hackl F; Glaser M; Rauter P; Brehm M; Spindlberger L; Simbula A; Galli M; Fromherz T; Schäffler F
    ACS Photonics; 2017 Mar; 4(3):665-673. PubMed ID: 28345012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission.
    Sapienza L; Davanço M; Badolato A; Srinivasan K
    Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
    Khankhoje UK; Kim SH; Richards BC; Hendrickson J; Sweet J; Olitzky JD; Khitrova G; Gibbs HM; Scherer A
    Nanotechnology; 2010 Feb; 21(6):065202. PubMed ID: 20057040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities.
    Surrente A; Felici M; Gallo P; Dwir B; Rudra A; Biasiol G; Sorba L; Kapon E
    Nanotechnology; 2011 Nov; 22(46):465203. PubMed ID: 22032901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity quantum electrodynamics with Anderson-localized modes.
    Sapienza L; Thyrrestrup H; Stobbe S; Garcia PD; Smolka S; Lodahl P
    Science; 2010 Mar; 327(5971):1352-5. PubMed ID: 20223981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Quantum Dot Selection and Tailor-Made Photonic Device Integration using a Nanoscale-Focus Pinspot.
    Choi M; Lee M; Park SL; Kim BS; Jun S; Park SI; Song JD; Ko YH; Cho YH
    Adv Mater; 2023 Jun; 35(26):e2210667. PubMed ID: 36946467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards registered single quantum dot photonic devices.
    Lee KH; Brossard FS; Hadjipanayi M; Xu X; Waldermann F; Green AM; Sharp DN; Turberfield AJ; Williams DA; Taylor RA
    Nanotechnology; 2008 Nov; 19(45):455307. PubMed ID: 21832772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity.
    Zhao Y; Chen LH; Wang XH
    Opt Express; 2019 Jul; 27(15):20211-20220. PubMed ID: 31510119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths.
    Hoang TB; Beetz J; Lermer M; Midolo L; Kamp M; Höfling S; Fiore A
    Opt Express; 2012 Sep; 20(19):21758-65. PubMed ID: 23037295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic coupling of single quantum dots to single nanocavity modes.
    Badolato A; Hennessy K; Atatüre M; Dreiser J; Hu E; Petroff PM; Imamoglu A
    Science; 2005 May; 308(5725):1158-61. PubMed ID: 15905398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic molecules defined by SU-8 photoresist strips on a photonic crystal waveguide.
    Lennon SA; Brossard FSF; Nuttall LP; Wu J; Griffiths J; Taylor RA
    Opt Express; 2018 Nov; 26(24):32332-32345. PubMed ID: 30650694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic crystal cavities from hexagonal boron nitride.
    Kim S; Fröch JE; Christian J; Straw M; Bishop J; Totonjian D; Watanabe K; Taniguchi T; Toth M; Aharonovich I
    Nat Commun; 2018 Jul; 9(1):2623. PubMed ID: 29976925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities.
    Wang LF; Cheng XT; Zhang XD; Yu JW; Yan JY; Ni ZB; Wang T; Xia MJ; Lin X; Liu F; Jin CY
    Opt Express; 2022 Mar; 30(7):10229-10238. PubMed ID: 35472995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of SiN
    Bisschop S; Geiregat P; Elsinger L; Drijvers E; Van Thourhout D; Hens Z; Brainis E
    Opt Express; 2018 Mar; 26(5):6046-6055. PubMed ID: 29529800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications.
    Sun J; Maeno K; Aki S; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Photon Interference from the Far-Field Emission of Chip-Integrated Cavity-Coupled Emitters.
    Kim JH; Richardson CJ; Leavitt RP; Waks E
    Nano Lett; 2016 Nov; 16(11):7061-7066. PubMed ID: 27749076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources.
    Yang J; Chen Y; Rao Z; Zheng Z; Song C; Chen Y; Xiong K; Chen P; Zhang C; Wu W; Yu Y; Yu S
    Light Sci Appl; 2024 Jan; 13(1):33. PubMed ID: 38291018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.