These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29041412)

  • 1. On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes.
    Camacho M; Boix RR; Medina F; Hibbins AP; Roy Sambles J
    Opt Express; 2017 Oct; 25(20):24670-24677. PubMed ID: 29041412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraordinary optical transmission inside a waveguide: spatial mode dependence.
    Reichel KS; Lu PY; Backus S; Mendis R; Mittleman DM
    Opt Express; 2016 Dec; 24(25):28221-28227. PubMed ID: 27958533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.
    Mendis R; Mittleman DM
    Opt Express; 2009 Aug; 17(17):14839-50. PubMed ID: 19687963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-mode model of the extraordinary optical transmission without plasmons.
    Xie Y; Liu H; Jia H; Zhong Y
    Opt Express; 2015 Mar; 23(5):5749-62. PubMed ID: 25836805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable THz notch filter with a single groove inside parallel-plate waveguides.
    Lee ES; Jeon TI
    Opt Express; 2012 Dec; 20(28):29605-12. PubMed ID: 23388787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host.
    Xie Y; Zakharian AR; Moloney JV; Mansuripur M
    Opt Express; 2006 Oct; 14(22):10220-7. PubMed ID: 19529417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnon-Optic Effects with Spin-Wave Leaky Modes: Tunable Goos-Hänchen Shift and Wood's Anomaly.
    Sobucki K; Śmigaj W; Graczyk P; Krawczyk M; Gruszecki P
    Nano Lett; 2023 Aug; 23(15):6979-6984. PubMed ID: 37523860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic control of extraordinary optical transmission in the infrared regime.
    Sangiao S; Freire F; de León-Pérez F; Rodrigo SG; De Teresa JM
    Nanotechnology; 2016 Dec; 27(50):505202. PubMed ID: 27841162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guiding mode expansion of a TE and TM transverse-mode integral equation for dielectric slab waveguides with an abrupt termination.
    Wu TL; Chang HW
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2823-32. PubMed ID: 11688873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays.
    Camacho M; Boix RR; Medina F
    Phys Rev E; 2016 Jun; 93(6):063312. PubMed ID: 27415392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.
    van Beijnum F; Rétif C; Smiet CB; Liu H; Lalanne P; van Exter MP
    Nature; 2012 Dec; 492(7429):411-4. PubMed ID: 23257884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides.
    Mendis R
    Opt Lett; 2006 Sep; 31(17):2643-5. PubMed ID: 16902646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic process and microscopic mechanism of extraordinary terahertz transmission through perforated superconducting films.
    Wu JB; Zhang X; Jin BB; Liu HT; Chen YH; Li ZY; Zhang CH; Kang L; Xu WW; Chen J; Wang HB; Tonouchi M; Wu PH
    Sci Rep; 2015 Oct; 5():15588. PubMed ID: 26498994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes.
    Peer A; Biswas R
    Nanoscale; 2016 Feb; 8(8):4657-66. PubMed ID: 26853881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film.
    Gordon R; Marthandam P
    Opt Express; 2007 Oct; 15(20):12995-3002. PubMed ID: 19550569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides.
    Dhakal A; Raza A; Peyskens F; Subramanian AZ; Clemmen S; Le Thomas N; Baets R
    Opt Express; 2015 Oct; 23(21):27391-404. PubMed ID: 26480401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evanescent resonant mode for a T-shaped cavity in a terahertz parallel-plate waveguide.
    Wang K; Cao Q; Zhang H; Shen P; Xing L
    Appl Opt; 2018 Sep; 57(27):7967-7973. PubMed ID: 30462068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of optical transmission through metals perforated with subwavelength hole arrays.
    Kim TJ; Thio T; Ebbesen TW; Grupp DE; Lezec HJ
    Opt Lett; 1999 Feb; 24(4):256-8. PubMed ID: 18071472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates.
    Mbonye M; Mendis R; Mittleman DM
    Opt Express; 2012 Dec; 20(25):27800-9. PubMed ID: 23262725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achromatic wave plate in THz frequency region based on parallel metal plate waveguides with a pillar array.
    Nagai M; Mukai N; Minowa Y; Ashida M; Suzuki T; Takayanagi J; Ohtake H
    Opt Express; 2015 Feb; 23(4):4641-9. PubMed ID: 25836501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.