BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29041543)

  • 1. Filamentary plasma grating induced by interference of two femtosecond laser pulses in water.
    Liu F; Yuan S; He B; Nan J; Jiang M; Khan AQ; Ding L; Yu J; Zeng H
    Opt Express; 2017 Sep; 25(19):22303-22311. PubMed ID: 29041543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the size of gold nanoparticles produced by multiple filamentation of femtosecond laser pulses in aqueous solutions.
    Belmouaddine H; Shi M; Sanche L; Houde D
    Phys Chem Chem Phys; 2018 Sep; 20(36):23403-23413. PubMed ID: 30178785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments.
    Liu Z; Ding P; Shi Y; Lu X; Sun S; Liu X; Liu Q; Ding B; Hu B
    Opt Express; 2012 Apr; 20(8):8837-47. PubMed ID: 22513594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume plasma grating by noncollinear interaction of femtosecond filament arrays.
    Hu M; Nan J; Yuan S; Zeng H
    Opt Express; 2023 Mar; 31(7):11239-11248. PubMed ID: 37155764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of high-density electrons based on plasma grating induced Bragg diffraction in air.
    Shi L; Li W; Wang Y; Lu X; Ding L; Zeng H
    Phys Rev Lett; 2011 Aug; 107(9):095004. PubMed ID: 21929249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation gratings in cross-beam filament wake channels in a dense argon gas: Formation, control, and Rabi sideband manifestation.
    Bajpai S; Romanov DA
    Phys Rev E; 2023 Jun; 107(6-2):065202. PubMed ID: 37464635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air.
    Odhner J; Levis RJ
    Opt Lett; 2012 May; 37(10):1775-7. PubMed ID: 22627567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation distance-resolved characteristics of copper plasma emission induced by axicon-focused femtosecond laser filamentation in air.
    Lin S; Zhang D; Jiang Y; Chen A; Jin M
    Opt Express; 2022 May; 30(10):17026-17037. PubMed ID: 36221534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses.
    Polavarapu L; Venkatram N; Ji W; Xu QH
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2298-303. PubMed ID: 20355865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dense ionization and subsequent non-homogeneous radical-mediated chemistry of femtosecond laser-induced low density plasma in aqueous solutions: synthesis of colloidal gold.
    Belmouaddine H; Shi M; Karsenti PL; Meesat R; Sanche L; Houde D
    Phys Chem Chem Phys; 2017 Mar; 19(11):7897-7909. PubMed ID: 28262861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond laser-induced damage and filamentary propagation in fused silica.
    Sudrie L; Couairon A; Franco M; Lamouroux B; Prade B; Tzortzakis S; Mysyrowicz A
    Phys Rev Lett; 2002 Oct; 89(18):186601. PubMed ID: 12398624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air-laser-based coherent Raman spectroscopy of atmospheric molecules in a filamentary plasma grating.
    Cao J; Fu Y; Wang T; Li H; Xu H
    Opt Lett; 2023 Aug; 48(16):4308-4311. PubMed ID: 37582019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-pinching of pulsed laser beams during filamentary propagation.
    Brée C; Demircan A; Skupin S; Bergé L; Steinmeyer G
    Opt Express; 2009 Sep; 17(19):16429-35. PubMed ID: 19770857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared generation by filamentation in air of a spectrally shaped laser beam.
    Lassonde P; Théberge F; Payeur S; Châteauneuf M; Dubois J; Kieffer JC
    Opt Express; 2011 Jul; 19(15):14093-8. PubMed ID: 21934771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curved plasma channel generation using ultraintense Airy beams.
    Polynkin P; Kolesik M; Moloney JV; Siviloglou GA; Christodoulides DN
    Science; 2009 Apr; 324(5924):229-32. PubMed ID: 19359582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White-light generation control with crossing beams of femtosecond laser pulses.
    Kolomenskii AA; Strohaber J; Kaya N; Kaya G; Sokolov AV; Schuessler HA
    Opt Express; 2016 Jan; 24(1):282-93. PubMed ID: 26832259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air.
    Sun X; Xu S; Zhao J; Liu W; Cheng Y; Xu Z; Chin SL; Mu G
    Opt Express; 2012 Feb; 20(4):4790-5. PubMed ID: 22418236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz modulation induced by filament interaction.
    He B; Nan J; Li M; Yuan S; Zeng H
    Opt Lett; 2017 Mar; 42(5):967-970. PubMed ID: 28248343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz beam steering using interference of femtosecond optical pulses.
    Uematsu K; Maki K; Otani C
    Opt Express; 2012 Sep; 20(20):22914-21. PubMed ID: 23037441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.