These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29041581)

  • 1. Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires.
    Choi JS; Kim KH; No YS
    Opt Express; 2017 Sep; 25(19):22750-22759. PubMed ID: 29041581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology.
    Kim S; Cahoon JF
    Acc Chem Res; 2019 Dec; 52(12):3511-3520. PubMed ID: 31799833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires.
    Leahu G; Petronijevic E; Belardini A; Centini M; Li Voti R; Hakkarainen T; Koivusalo E; Guina M; Sibilia C
    Sci Rep; 2017 Jun; 7(1):2833. PubMed ID: 28588228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of highly efficient quad-crescent-shaped Si nanowires solar cell.
    El-Bashar R; Hussein M; Hegazy SF; Badr Y; Farhat O Hameed M; Obayya SSA
    Opt Express; 2021 Apr; 29(9):13641-13656. PubMed ID: 33985095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of optical absorption in conical nanowires.
    Wilson DP; LaPierre RR
    Opt Express; 2021 Mar; 29(6):9544-9552. PubMed ID: 33820379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband quantum efficiency enhancement in high index nanowire resonators.
    Yang Y; Peng X; Hyatt S; Yu D
    Nano Lett; 2015 May; 15(5):3541-6. PubMed ID: 25919358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length dependent optical characteristics analysis for semiconductor nanowires.
    Dhindsa N; Kohandani R; Saini SS
    Nanotechnology; 2020 May; 31(22):224001. PubMed ID: 32053794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design.
    Liu W; Guo X; Xing S; Yao H; Wang Y; Bai L; Wang Q; Zhang L; Wu D; Zhang Y; Wang X; Yi Y
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32887500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays.
    Mortazavifar SL; Salehi MR; Shahraki M; Abiri E
    Front Optoelectron; 2022 Apr; 15(1):6. PubMed ID: 36637569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodically Diameter-Modulated Semiconductor Nanowires for Enhanced Optical Absorption.
    Ko M; Baek SH; Song B; Kang JW; Kim SA; Cho CH
    Adv Mater; 2016 Apr; 28(13):2504-10. PubMed ID: 26833855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of light-matter interaction in single vertical nanowires in ordered nanowire arrays.
    Li Z; Li L; Wang F; Xu L; Gao Q; Alabadla A; Peng K; Vora K; Hattori HT; Tan HH; Jagadish C; Fu L
    Nanoscale; 2022 Mar; 14(9):3527-3536. PubMed ID: 35171176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purcell effect for active tuning of light scattering from semiconductor optical antennas.
    Holsteen AL; Raza S; Fan P; Kik PG; Brongersma ML
    Science; 2017 Dec; 358(6369):1407-1410. PubMed ID: 29242341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.
    Dong A; Tang R; Buhro WE
    J Am Chem Soc; 2007 Oct; 129(40):12254-62. PubMed ID: 17880075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.
    Zhou K; Cheng Q; Song J; Lu L; Jia Z; Li J
    Appl Opt; 2018 Jan; 57(1):102-111. PubMed ID: 29328120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth Conditions Control the Elastic and Electrical Properties of ZnO Nanowires.
    Wang X; Chen K; Zhang Y; Wan J; Warren OL; Oh J; Li J; Ma E; Shan Z
    Nano Lett; 2015 Dec; 15(12):7886-92. PubMed ID: 26510098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires.
    Lévy-Clément C; Elias J
    Chemphyschem; 2013 Jul; 14(10):2321-30. PubMed ID: 23744540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.