These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 29041675)

  • 1. Secchi disk observation with spectral-selective glasses in blue and green waters.
    Lee Z; Shang S; Lin G; Liu T; Liu Y; Du K; Luis K
    Opt Express; 2017 Aug; 25(17):19878-19885. PubMed ID: 29041675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why does the Secchi disk disappear? An imaging perspective.
    Hou W; Lee Z; Weidemann AD
    Opt Express; 2007 Mar; 15(6):2791-802. PubMed ID: 19532517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Solar-Powered IoT-Based Instrument for Automatic Measurement of Water Clarity.
    Pham TN; Ho APH; Nguyen TV; Nguyen HM; Truong NH; Huynh ND; Nguyen TH; Dung LT
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32268501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Secchi disk depth measurement based on artificial intelligence object recognition.
    Khanna H; Fan YW; Chan SN
    Mar Pollut Bull; 2022 Dec; 185(Pt B):114378. PubMed ID: 36435020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shift in apparent contrast of disc at Secchi disc depth in coastal sea areas.
    Arakawa H; Inada M; Choi S; Narita M
    Environ Monit Assess; 2013 Mar; 185(3):2307-13. PubMed ID: 22688411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water Quality Measurement and Modelling Based on Deep Learning Techniques: Case Study for the Parameter of Secchi Disk.
    Lin F; Gan L; Jin Q; You A; Hua L
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biases in ocean color over a Secchi disk.
    Pitarch J
    Opt Express; 2017 Nov; 25(24):A1124-A1131. PubMed ID: 29220989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research.
    Seafarers SD; Lavender S; Beaugrand G; Outram N; Barlow N; Crotty D; Evans J; Kirby R
    PLoS One; 2017; 12(12):e0186092. PubMed ID: 29211734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing of optical properties in continuously stratified waters.
    Gordon HR
    Appl Opt; 1978 Jun; 17(12):1893-7. PubMed ID: 20198090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing.
    Lee Z; Shang S; Du K; Liu B; Lin G; Wei J; Li X
    Appl Opt; 2018 May; 57(13):3463-3473. PubMed ID: 29726515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination.
    Hoge FE; Wright CW; Swift RN
    Appl Opt; 1987 Jun; 26(11):2082-94. PubMed ID: 20489826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared.
    Kishimoto M; Antonucci R; Blaes O; Lawrence A; Boisson C; Albrecht M; Leipski C
    Nature; 2008 Jul; 454(7203):492-4. PubMed ID: 18650919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response.
    Gordon HR
    Appl Opt; 1995 Dec; 34(36):8363-74. PubMed ID: 21068957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Use of Green Laser in LiDAR Bathymetry: State of the Art and Recent Advancements.
    Szafarczyk A; Toś C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Frequency Observation of Water Spectrum and Its Application in Monitoring of Dynamic Variation of Suspended Materials in the Hangzhou Bay.
    Dai Q; Pan DL; He XQ; Zhu QK; Gong F; Huang HQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3247-54. PubMed ID: 26978944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain.
    Lee Z; Shang S; Lin G; Chen J; Doxaran D
    Appl Opt; 2016 Mar; 55(7):1738-50. PubMed ID: 26974638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deriving inherent optical properties from classical water color measurements: Forel-Ule index and Secchi disk depth.
    Wang S; Lee Z; Shang S; Li J; Zhang B; Lin G
    Opt Express; 2019 Mar; 27(5):7642-7655. PubMed ID: 30876326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3-ZnO-PbO glasses.
    Lakshminarayana G; Buddhudu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):295-304. PubMed ID: 15978869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.