These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29041721)

  • 1. Quantitative calibration of sound pressure in ultrasonic standing waves using the Schlieren method.
    Xu Z; Chen H; Yan X; Qian M; Cheng Q
    Opt Express; 2017 Aug; 25(17):20401-20409. PubMed ID: 29041721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method.
    Jiang X; Cheng Q; Xu Z; Qian M; Han Q
    Appl Opt; 2016 Apr; 55(10):2478-83. PubMed ID: 27139646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schlieren visualization of ultrasonic wave fields with high spatial resolution.
    Neumann T; Ermert H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1561-6. PubMed ID: 16815508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in situ calibration for hearing thresholds.
    Withnell RH; Jeng PS; Waldvogel K; Morgenstein K; Allen JB
    J Acoust Soc Am; 2009 Mar; 125(3):1605-11. PubMed ID: 19275318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation.
    Möller D; Degen N; Dual J
    J Nanobiotechnology; 2013 Jun; 11():21. PubMed ID: 23842114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis.
    Pan M; Zeng Y; Huang Z
    Rev Sci Instrum; 2014 Sep; 85(9):093112. PubMed ID: 25273712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves.
    Radel S; McLoughlin AJ; Gherardini L; Doblhoff-Dier O; Benes E
    Ultrasonics; 2000 Mar; 38(1-8):633-7. PubMed ID: 10829741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative schlieren visualization.
    Stanic S
    Appl Opt; 1978 Mar; 17(5):837-42. PubMed ID: 20197881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
    Liang Z; Zhou G; Zhang Y; Li Z; Lin S
    Ultrasonics; 2006 Dec; 45(1-4):146-51. PubMed ID: 16987537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of pressure-velocity probes using a progressive plane wave reference field and comparison with nominal calibration filters.
    Stanzial D; Sacchi G; Schiffrer G
    J Acoust Soc Am; 2011 Jun; 129(6):3745-55. PubMed ID: 21682398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plane-wave analysis of the near field of light diffracted by ultrasound.
    Blomme E; Leroy O
    J Acoust Soc Am; 1992 Mar; 91(3):1474-83. PubMed ID: 1564191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size effects on stable levitation positions in acoustic standing waves.
    Rueckner W; Peidle J; Crockett A; Davis D
    J Acoust Soc Am; 2023 Aug; 154(2):1339-1346. PubMed ID: 37650782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor.
    Basten TG; de Bree HE
    J Acoust Soc Am; 2010 Jan; 127(1):264-70. PubMed ID: 20058972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustooptic analysis of high frequency wideband sound field schlieren imaging.
    Mehrl D; Korpel A; Bridge W
    Appl Opt; 1990 Nov; 29(32):4766-71. PubMed ID: 20577464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip.
    Ohlin M; Iranmanesh I; Christakou AE; Wiklund M
    Lab Chip; 2015 Aug; 15(16):3341-9. PubMed ID: 26156858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.
    Mahravan E; Naderan H; Damangir E
    Ultrasonics; 2016 Dec; 72():184-90. PubMed ID: 27566141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of absolute sound pressure in a small-sized sonochemical reactor.
    Sato S; Wada Y; Koyama D; Nakamura K
    Ultrason Sonochem; 2013 Jan; 20(1):468-71. PubMed ID: 22832279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.
    Declercq NF
    Ultrasonics; 2014 Feb; 54(2):609-13. PubMed ID: 24079915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.