These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29041721)

  • 21. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Producing acoustic frozen waves: simulated experiments.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2414-25. PubMed ID: 24158296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elimination of standing wave effects in ultrasound radiation force excitation in air using random carrier frequency packets.
    Huber TM; Beaver NM; Helps JR
    J Acoust Soc Am; 2011 Oct; 130(4):1838-43. PubMed ID: 21973337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid Level Measurement Model Outside of Closed Containers Based on Continuous Sound Wave Amplitude.
    Zhang Y; Zhang B; Zhang L; Li Y; Gao X; Liu Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid quantification of 3D ultrasound fields with wavefront sensing and Schlieren tomography.
    Colom M; Ricci P; Duocastella M
    Ultrasonics; 2023 Dec; 135():107115. PubMed ID: 37536015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.
    Koyama D; Kotera H; Kitazawa N; Yoshida K; Nakamura K; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):737-43. PubMed ID: 21507751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced standing-wave acoustic levitation using high-order transverse modes in phased array ultrasonic cavities.
    Contreras V; Volke-Sepúlveda K
    Ultrasonics; 2024 Mar; 138():107230. PubMed ID: 38176289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional reconstruction of nonplanar ultrasound fields using Radon transform and the schlieren imaging method.
    Xu Z; Chen H; Yan X; Qian ML; Cheng Q
    J Acoust Soc Am; 2017 Jul; 142(1):EL82. PubMed ID: 28764426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oximetry based on diffuse photon density wave differentials.
    Ntziachristos V; Kohl M; Ma H; Chance B
    Med Phys; 2000 Feb; 27(2):410-21. PubMed ID: 10718146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a standing wave apparatus for calibrating acoustic vector sensors and hydrophones.
    Lenhart RD; Sagers JD; Wilson PS
    J Acoust Soc Am; 2016 Jan; 139(1):176-87. PubMed ID: 26827015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study of standing wave reduction methods using random modulation for transcranial ultrasonication.
    Furuhata H; Saito O
    Ultrasound Med Biol; 2013 Aug; 39(8):1440-50. PubMed ID: 23743103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light diffraction by two parallel superposed ultrasonic waves of the frequency ratio 1:2.
    Gondek G; Grulkowski I; Kwiek P; Reibold R
    Ultrasonics; 2007 May; 46(2):133-7. PubMed ID: 17316732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of secondary ultrasonic waves radiated by two oscillating bubbles.
    Chelly N; Yamakoshi Y; Masuda N
    J Med Ultrason (2001); 2004 Sep; 31(3):121-9. PubMed ID: 27278747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of wave fields generated by ultrasonic transducers using a quasi-Monte Carlo method.
    Zhang S; Huang Y; Li X; Jeong H
    J Acoust Soc Am; 2021 Jan; 149(1):7. PubMed ID: 33514121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective isolation of primo vessels in lymph using sound- and ultrasonic-wave stimulation.
    Park DY; Lee HR; Rho MS; Lee SS
    J Acupunct Meridian Stud; 2014 Dec; 7(6):298-305. PubMed ID: 25499563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Costa ET
    Ultrasonics; 2014 Aug; 54(6):1620-30. PubMed ID: 24709072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.