These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29041728)

  • 1. Transition radiation from graphene plasmons by a bunch beam in the terahertz regime.
    Zhang KC; Chen XX; Sheng CJ; Ooi KJA; Ang LK; Yuan XS
    Opt Express; 2017 Aug; 25(17):20477-20485. PubMed ID: 29041728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
    Feng X; Gong S; Zhong R; Zhao T; Hu M; Zhang C; Liu S
    Opt Lett; 2018 Mar; 43(5):1187-1190. PubMed ID: 29489812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring terahertz near-field enhancement via two-dimensional plasmons.
    Davoyan AR; Popov VV; Nikitov SA
    Phys Rev Lett; 2012 Mar; 108(12):127401. PubMed ID: 22540623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced coherent emission of terahertz radiation by energy-phase correlation in a bunched electron beam.
    Doria A; Gallerano GP; Giovenale E; Messina G; Spassovsky I
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):264801. PubMed ID: 15697983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam.
    Zhao T; Gong S; Hu M; Zhong R; Liu D; Chen X; Zhang P; Wang X; Zhang C; Wu P; Liu S
    Sci Rep; 2015 Nov; 5():16059. PubMed ID: 26525516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching.
    Wang D; Yan LX; Du YC; Hua JF; Du Q; Qian HJ; Lu XH; Huang WH; Chen HB; Tang CX
    Rev Sci Instrum; 2013 Feb; 84(2):022704. PubMed ID: 23464186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering tunable terahertz radiation from an electron bunch using graphene metasurfaces.
    Qi L; Wu M; Han X
    Appl Opt; 2022 Jun; 61(16):4773-4778. PubMed ID: 36255959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission of terahertz plasmons from driven electrons in grated graphene.
    Zhao C; Liu Y; Qie Y; Han F; Yang H; Dong H
    Opt Express; 2019 Sep; 27(19):26569-26578. PubMed ID: 31674535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.
    Li W; Lu Y; He Z; Jia Q; Wang L
    Opt Lett; 2016 Jun; 41(11):2458-61. PubMed ID: 27244388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene patterns supported terahertz tunable plasmon induced transparency.
    He X; Liu F; Lin F; Shi W
    Opt Express; 2018 Apr; 26(8):9931-9944. PubMed ID: 29715939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable terahertz coherent perfect absorption in a monolayer graphene.
    Fan Y; Zhang F; Zhao Q; Wei Z; Li H
    Opt Lett; 2014 Nov; 39(21):6269-72. PubMed ID: 25361331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable optical bistability of dielectric/nonlinear graphene/dielectric heterostructures.
    Dai X; Jiang L; Xiang Y
    Opt Express; 2015 Mar; 23(5):6497-508. PubMed ID: 25836868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable low-threshold bistable Goos-Hänchen shift and Imbert-Fedorov shift using long-range graphene surface plasmons within the terahertz region.
    Kar A; Goswami N; Saha A
    Appl Opt; 2019 Dec; 58(34):9376-9383. PubMed ID: 31873528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of coherent transition radiation generated at a plasma-vacuum interface.
    Schroeder CB; Esarey E; Van Tilborg J; Leemans WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016501. PubMed ID: 14995729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of terahertz radiation from graphene surface plasmon polaritons via surface acoustic wave.
    Jin S; Wang X; Han P; Sun W; Feng S; Ye J; Zhang C; Zhang Y
    Opt Express; 2019 Apr; 27(8):11137-11151. PubMed ID: 31052962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide.
    Cook AM; Tikhoplav R; Tochitsky SY; Travish G; Williams OB; Rosenzweig JB
    Phys Rev Lett; 2009 Aug; 103(9):095003. PubMed ID: 19792803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low threshold optical bistability at terahertz frequencies with graphene surface plasmons.
    Dai X; Jiang L; Xiang Y
    Sci Rep; 2015 Jul; 5():12271. PubMed ID: 26194273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating.
    Cheng BH; Ye YS; Lan YC; Tsai DP
    Sci Rep; 2017 Jul; 7(1):6443. PubMed ID: 28743944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Below gap optical absorption in GaAs driven by intense, single-cycle coherent transition radiation.
    Goodfellow J; Fuchs M; Daranciang D; Ghimire S; Chen F; Loos H; Reis DA; Fisher AS; Lindenberg AM
    Opt Express; 2014 Jul; 22(14):17423-9. PubMed ID: 25090555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based terahertz metasurface with tunable spectrum splitting.
    Su Z; Chen X; Yin J; Zhao X
    Opt Lett; 2016 Aug; 41(16):3799-802. PubMed ID: 27519092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.