These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782 [TBL] [Abstract][Full Text] [Related]
7. Computational Identification of MoRFs in Protein Sequences Using Hierarchical Application of Bayes Rule. Malhis N; Wong ET; Nassar R; Gsponer J PLoS One; 2015; 10(10):e0141603. PubMed ID: 26517836 [TBL] [Abstract][Full Text] [Related]
8. MoRFPred_en: Sequence-based prediction of MoRFs using an ensemble learning strategy. Fang C; Moriwaki Y; Li C; Shimizu K J Bioinform Comput Biol; 2019 Dec; 17(6):1940015. PubMed ID: 32019410 [TBL] [Abstract][Full Text] [Related]
9. Predicting Functions of Disordered Proteins with MoRFpred. Oldfield CJ; Uversky VN; Kurgan L Methods Mol Biol; 2019; 1851():337-352. PubMed ID: 30298407 [TBL] [Abstract][Full Text] [Related]
10. MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation. Fang C; Noguchi T; Tominaga D; Yamana H BMC Bioinformatics; 2013 Oct; 14():300. PubMed ID: 24093637 [TBL] [Abstract][Full Text] [Related]
11. Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions. Sharma R; Sharma A; Patil A; Tsunoda T BMC Bioinformatics; 2019 Feb; 19(Suppl 13):378. PubMed ID: 30717652 [TBL] [Abstract][Full Text] [Related]
12. Molecular Recognition Features in Zika Virus Proteome. Mishra PM; Uversky VN; Giri R J Mol Biol; 2018 Aug; 430(16):2372-2388. PubMed ID: 29080786 [TBL] [Abstract][Full Text] [Related]
13. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method. Fang C; Moriwaki Y; Tian A; Li C; Shimizu K J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736 [TBL] [Abstract][Full Text] [Related]
14. Computational prediction of MoRFs based on protein sequences and minimax probability machine. He H; Zhao J; Sun G BMC Bioinformatics; 2019 Oct; 20(1):529. PubMed ID: 31660849 [TBL] [Abstract][Full Text] [Related]
15. MoRF_ESM: Prediction of MoRFs in disordered proteins based on a deep transformer protein language model. Fang C; He J; Yamana H J Bioinform Comput Biol; 2024 Apr; 22(2):2450006. PubMed ID: 38812466 [TBL] [Abstract][Full Text] [Related]
16. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information. Peng Z; Li Z; Meng Q; Zhao B; Kurgan L Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458437 [TBL] [Abstract][Full Text] [Related]
17. Identifying molecular recognition features in intrinsically disordered regions of proteins by transfer learning. Hanson J; Litfin T; Paliwal K; Zhou Y Bioinformatics; 2020 Feb; 36(4):1107-1113. PubMed ID: 31504193 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions. Dolan PT; Roth AP; Xue B; Sun R; Dunker AK; Uversky VN; LaCount DJ Protein Sci; 2015 Feb; 24(2):221-35. PubMed ID: 25424537 [TBL] [Abstract][Full Text] [Related]
19. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Xue B; Dunker AK; Uversky VN Int J Mol Sci; 2010 Sep; 11(10):3725-47. PubMed ID: 21152297 [TBL] [Abstract][Full Text] [Related]
20. Molecular recognition features (MoRFs) in three domains of life. Yan J; Dunker AK; Uversky VN; Kurgan L Mol Biosyst; 2016 Mar; 12(3):697-710. PubMed ID: 26651072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]