These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 29042278)
21. Polymer-conjugated bovine pancreatic and seminal ribonucleases inhibit growth of human tumors in nude mice. Poucková P; Zadinová M; Hlousková D; Strohalm J; Plocová D; Spunda M; Olejár T; Zitko M; Matousek J; Ulbrich K; Soucek J J Control Release; 2004 Feb; 95(1):83-92. PubMed ID: 15013235 [TBL] [Abstract][Full Text] [Related]
22. A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action. Bracale A; Castaldi F; Nitsch L; D'Alessio G Eur J Biochem; 2003 May; 270(9):1980-7. PubMed ID: 12709057 [TBL] [Abstract][Full Text] [Related]
23. Full antitumor action of recombinant seminal ribonuclease depends on the removal of its N-terminal methionine. Adinolfi BS; Cafaro V; D'Alessio G; Di Donato A Biochem Biophys Res Commun; 1995 Aug; 213(2):525-32. PubMed ID: 7646508 [TBL] [Abstract][Full Text] [Related]
24. Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach. Ercole C; Colamarino RA; Pizzo E; Fogolari F; Spadaccini R; Picone D Biopolymers; 2009 Dec; 91(12):1009-17. PubMed ID: 19263489 [TBL] [Abstract][Full Text] [Related]
25. Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. Rutkoski TJ; Kurten EL; Mitchell JC; Raines RT J Mol Biol; 2005 Nov; 354(1):41-54. PubMed ID: 16188273 [TBL] [Abstract][Full Text] [Related]
26. PEG chains increase aspermatogenic and antitumor activity of RNase A and BS-RNase enzymes. Matousek J; Poucková P; Soucek J; Skvor J J Control Release; 2002 Jul; 82(1):29-37. PubMed ID: 12106974 [TBL] [Abstract][Full Text] [Related]
27. Crystal structure of RNase A tandem enzymes and their interaction with the cytosolic ribonuclease inhibitor. Arnold U; Leich F; Neumann P; Lilie H; Ulbrich-Hofmann R FEBS J; 2011 Jan; 278(2):331-40. PubMed ID: 21134128 [TBL] [Abstract][Full Text] [Related]
28. Glycine 38 is crucial for the ribonucleolytic activity of human pancreatic ribonuclease on double-stranded RNA. Gaur D; Seth D; Batra JK Biochem Biophys Res Commun; 2002 Sep; 297(2):390-5. PubMed ID: 12237131 [TBL] [Abstract][Full Text] [Related]
29. Ribonucleases endowed with specific toxicity for spermatogenic layers. Matoušek J; Kim JS; Souček J; Rìha J; Ribó M; Leland PA; Raines RT Comp Biochem Physiol B Biochem Mol Biol; 1997 Dec; 118(4):881-888. PubMed ID: 21399757 [TBL] [Abstract][Full Text] [Related]
30. Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Futami J; Maeda T; Kitazoe M; Nukui E; Tada H; Seno M; Kosaka M; Yamada H Biochemistry; 2001 Jun; 40(25):7518-24. PubMed ID: 11412105 [TBL] [Abstract][Full Text] [Related]
31. A new mutant of bovine seminal ribonuclease with a reversed swapping propensity. Ercole C; Spadaccini R; Alfano C; Tancredi T; Picone D Biochemistry; 2007 Feb; 46(8):2227-32. PubMed ID: 17269658 [TBL] [Abstract][Full Text] [Related]
32. Role of aspartic acid 121 in human pancreatic ribonuclease catalysis. Gaur D; Batra JK Mol Cell Biochem; 2005 Jul; 275(1-2):95-101. PubMed ID: 16335788 [TBL] [Abstract][Full Text] [Related]
33. Onconase dimerization through 3D domain swapping: structural investigations and increase in the apoptotic effect in cancer cells. Fagagnini A; Pica A; Fasoli S; Montioli R; Donadelli M; Cordani M; Butturini E; Acquasaliente L; Picone D; Gotte G Biochem J; 2017 Nov; 474(22):3767-3781. PubMed ID: 28963346 [TBL] [Abstract][Full Text] [Related]
34. Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction. Suzuki M; Saxena SK; Boix E; Prill RJ; Vasandani VM; Ladner JE; Sung C; Youle RJ Nat Biotechnol; 1999 Mar; 17(3):265-70. PubMed ID: 10096294 [TBL] [Abstract][Full Text] [Related]
35. Cytotoxicity of polyspermine-ribonuclease A and polyspermine-dimeric ribonuclease A. Poucková P; Morbio M; Vottariello F; Laurents DV; Matousek J; Soucek J; Gotte G; Donadelli M; Costanzo C; Libonati M Bioconjug Chem; 2007; 18(6):1946-55. PubMed ID: 17914869 [TBL] [Abstract][Full Text] [Related]
36. New muteins of RNase A with enhanced antitumor action. Cafaro V; Bracale A; Di Maro A; Sorrentino S; D'Alessio G; Di Donato A FEBS Lett; 1998 Oct; 437(1-2):149-52. PubMed ID: 9804190 [TBL] [Abstract][Full Text] [Related]
37. Human pancreatic ribonuclease--deletion of the carboxyl-terminal EDST extension enhances ribonuclease activity and thermostability. Bal HP; Batra JK Eur J Biochem; 1997 Apr; 245(2):465-9. PubMed ID: 9151980 [TBL] [Abstract][Full Text] [Related]
38. Immunosuppressive activity of angiogenin in comparison with bovine seminal ribonuclease and pancreatic ribonuclease. Matousek J; Soucek J; Ríha J; Zankel TR; Benner SA Comp Biochem Physiol B Biochem Mol Biol; 1995 Oct; 112(2):235-41. PubMed ID: 7584854 [TBL] [Abstract][Full Text] [Related]
39. Fluorescence assay for the binding of ribonuclease A to the ribonuclease inhibitor protein. Abel RL; Haigis MC; Park C; Raines RT Anal Biochem; 2002 Jul; 306(1):100-7. PubMed ID: 12069420 [TBL] [Abstract][Full Text] [Related]
40. The role of electrostatic interactions in the antitumor activity of dimeric RNases. Notomista E; Mancheño JM; Crescenzi O; Di Donato A; Gavilanes J; D'Alessio G FEBS J; 2006 Aug; 273(16):3687-97. PubMed ID: 16911519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]