BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 29042314)

  • 1. Differential distribution and function of GABA
    Kulik Á; Booker SA; Vida I
    Neuropharmacology; 2018 Jul; 136(Pt A):80-91. PubMed ID: 29042314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential surface density and modulatory effects of presynaptic GABA
    Booker SA; Althof D; Degro CE; Watanabe M; Kulik Á; Vida I
    Brain Struct Funct; 2017 Nov; 222(8):3677-3690. PubMed ID: 28466358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic GABA
    Booker SA; Harada H; Elgueta C; Bank J; Bartos M; Kulik A; Vida I
    Elife; 2020 Feb; 9():. PubMed ID: 32073397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynaptic GABA
    Booker SA; Loreth D; Gee AL; Watanabe M; Kind PC; Wyllie DJA; Kulik Á; Vida I
    Cell Rep; 2018 Jan; 22(1):36-43. PubMed ID: 29298431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels.
    Kaupmann K; Schuler V; Mosbacher J; Bischoff S; Bittiger H; Heid J; Froestl W; Leonhard S; Pfaff T; Karschin A; Bettler B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(25):14991-6. PubMed ID: 9844003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCTD12 Auxiliary Proteins Modulate Kinetics of GABAB Receptor-Mediated Inhibition in Cholecystokinin-Containing Interneurons.
    Booker SA; Althof D; Gross A; Loreth D; Müller J; Unger A; Fakler B; Varro A; Watanabe M; Gassmann M; Bettler B; Shigemoto R; Vida I; Kulik Á
    Cereb Cortex; 2017 Mar; 27(3):2318-2334. PubMed ID: 27073217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA transporters control GABAergic neurotransmission in the mouse subplate.
    Unichenko P; Kirischuk S; Luhmann HJ
    Neuroscience; 2015 Sep; 304():217-27. PubMed ID: 26232716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmental distribution of GABAB receptor-mediated currents along the somatodendritic axis of hippocampal principal cells.
    Degro CE; Kulik A; Booker SA; Vida I
    Front Synaptic Neurosci; 2015; 7():6. PubMed ID: 25852540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells.
    Kulik A; Vida I; Fukazawa Y; Guetg N; Kasugai Y; Marker CL; Rigato F; Bettler B; Wickman K; Frotscher M; Shigemoto R
    J Neurosci; 2006 Apr; 26(16):4289-97. PubMed ID: 16624949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro.
    Wang Y; Neubauer FB; Lüscher HR; Thurley K
    Eur J Neurosci; 2010 May; 31(9):1582-94. PubMed ID: 20525071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA
    Salio C; Merighi A; Bardoni R
    Mol Pain; 2017; 13():1744806917710041. PubMed ID: 28565998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics.
    Szabó GG; Papp OI; Máté Z; Szabó G; Hájos N
    Hippocampus; 2014 Dec; 24(12):1506-23. PubMed ID: 25044969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of GABAB receptor subtypes assembled with auxiliary KCTD subunits.
    Rajalu M; Fritzius T; Adelfinger L; Jacquier V; Besseyrias V; Gassmann M; Bettler B
    Neuropharmacology; 2015 Jan; 88():145-54. PubMed ID: 25196734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors.
    Terunuma M; Vargas KJ; Wilkins ME; Ramírez OA; Jaureguiberry-Bravo M; Pangalos MN; Smart TG; Moss SJ; Couve A
    Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13918-23. PubMed ID: 20643948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-type specific GABA synaptic transmission and activity-dependent plasticity in rat hippocampal stratum radiatum interneurons.
    Patenaude C; Massicotte G; Lacaille JC
    Eur J Neurosci; 2005 Jul; 22(1):179-88. PubMed ID: 16029207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells.
    Valente P; Orlando M; Raimondi A; Benfenati F; Baldelli P
    Cereb Cortex; 2016 Mar; 26(3):1149-67. PubMed ID: 25576534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA(B) receptors at glutamatergic synapses in the rat striatum.
    Lacey CJ; Boyes J; Gerlach O; Chen L; Magill PJ; Bolam JP
    Neuroscience; 2005; 136(4):1083-95. PubMed ID: 16226840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors.
    Rossi P; Mapelli L; Roggeri L; Gall D; de Kerchove d'Exaerde A; Schiffmann SN; Taglietti V; D'Angelo E
    Eur J Neurosci; 2006 Jul; 24(2):419-32. PubMed ID: 16903850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels.
    Michaeli A; Yaka R
    Neuroscience; 2010 Feb; 165(4):1159-69. PubMed ID: 19944748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic relationships between axon terminals from the mediodorsal thalamic nucleus and gamma-aminobutyric acidergic cortical cells in the prelimbic cortex of the rat.
    Kuroda M; Yokofujita J; Oda S; Price JL
    J Comp Neurol; 2004 Sep; 477(2):220-34. PubMed ID: 15300791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.