These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29042480)

  • 1. Prediction of Protein Complexes in
    Crozier TWM; Tinti M; Larance M; Lamond AI; Ferguson MAJ
    Mol Cell Proteomics; 2017 Dec; 16(12):2254-2267. PubMed ID: 29042480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Effects of Lapatinib Revealed in the African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies.
    Guyett PJ; Behera R; Ogata Y; Pollastri M; Mensa-Wilmot K
    Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27872081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Architecture of Trypanosoma brucei editosomes.
    McDermott SM; Luo J; Carnes J; Ranish JA; Stuart K
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6476-E6485. PubMed ID: 27708162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Analysis of the Cell Cycle of Procylic Form
    Crozier TWM; Tinti M; Wheeler RJ; Ly T; Ferguson MAJ; Lamond AI
    Mol Cell Proteomics; 2018 Jun; 17(6):1184-1195. PubMed ID: 29555687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional proteomic study of the Trypanosoma brucei nuclear pore complex: an informatic strategy.
    Degrasse JA; Devos D
    Methods Mol Biol; 2010; 673():231-8. PubMed ID: 20835803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excreted/secreted proteins from trypanosome procyclic strains.
    Atyame Nten CM; Sommerer N; Rofidal V; Hirtz C; Rossignol M; Cuny G; Peltier JB; Geiger A
    J Biomed Biotechnol; 2010; 2010():212817. PubMed ID: 20011064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors.
    Luz Ambrósio D; Lee JH; Panigrahi AK; Nguyen TN; Cicarelli RM; Günzl A
    Eukaryot Cell; 2009 Jul; 8(7):990-1000. PubMed ID: 19429779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorting the Muck from the Brass: Analysis of Protein Complexes and Cell Lysates.
    Zoltner M; Del Pino RC; Field MC
    Methods Mol Biol; 2020; 2116():645-653. PubMed ID: 32221947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form.
    Acestor N; Zíková A; Dalley RA; Anupama A; Panigrahi AK; Stuart KD
    Mol Cell Proteomics; 2011 Sep; 10(9):M110.006908. PubMed ID: 21610103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TFPP: an SVM-based tool for recognizing flagellar proteins in Trypanosoma brucei.
    Zhang X; Shen Y; Ding G; Tian Y; Liu Z; Li B; Wang Y; Jiang C
    PLoS One; 2013; 8(1):e54032. PubMed ID: 23349782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Protein Complex Map of Trypanosoma brucei.
    Gazestani VH; Nikpour N; Mehta V; Najafabadi HS; Moshiri H; Jardim A; Salavati R
    PLoS Negl Trop Dis; 2016 Mar; 10(3):e0004533. PubMed ID: 26991453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei.
    Shimogawa MM; Saada EA; Vashisht AA; Barshop WD; Wohlschlegel JA; Hill KL
    Mol Cell Proteomics; 2015 Jul; 14(7):1977-88. PubMed ID: 25963835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome.
    Panigrahi AK; Ogata Y; Zíková A; Anupama A; Dalley RA; Acestor N; Myler PJ; Stuart KD
    Proteomics; 2009 Jan; 9(2):434-50. PubMed ID: 19105172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.
    Gadelha C; Zhang W; Chamberlain JW; Chait BT; Wickstead B; Field MC
    Mol Cell Proteomics; 2015 Jul; 14(7):1911-26. PubMed ID: 25931509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei.
    Ericson M; Janes MA; Butter F; Mann M; Ullu E; Tschudi C
    BMC Biol; 2014 Feb; 12():14. PubMed ID: 24552149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of the 45 S ribosomal small subunit-related complex for mitochondrial translation in Trypanosoma brucei.
    Ridlon L; Škodová I; Pan S; Lukeš J; Maslov DA
    J Biol Chem; 2013 Nov; 288(46):32963-78. PubMed ID: 24089529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis reveals diverse classes of arginine methylproteins in mitochondria of trypanosomes.
    Fisk JC; Li J; Wang H; Aletta JM; Qu J; Read LK
    Mol Cell Proteomics; 2013 Feb; 12(2):302-11. PubMed ID: 23152538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development.
    Zhang X; Cui J; Nilsson D; Gunasekera K; Chanfon A; Song X; Wang H; Xu Y; Ochsenreiter T
    Nucleic Acids Res; 2010 Nov; 38(21):7378-87. PubMed ID: 20660476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-Wide Quantitative Phosphoproteomic Analysis of Trypanosoma brucei Insect and Mammalian Life Cycle Stages.
    Benz C; Urbaniak MD
    Methods Mol Biol; 2020; 2116():125-137. PubMed ID: 32221919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology.
    Niemann M; Wiese S; Mani J; Chanfon A; Jackson C; Meisinger C; Warscheid B; Schneider A
    Mol Cell Proteomics; 2013 Feb; 12(2):515-28. PubMed ID: 23221899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.