These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29042597)

  • 1. Herpud1 negatively regulates pathological cardiac hypertrophy by inducing IP3 receptor degradation.
    Torrealba N; Navarro-Marquez M; Garrido V; Pedrozo Z; Romero D; Eura Y; Villalobos E; Roa JC; Chiong M; Kokame K; Lavandero S
    Sci Rep; 2017 Oct; 7(1):13402. PubMed ID: 29042597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally redundant control of cardiac hypertrophic signaling by inositol 1,4,5-trisphosphate receptors.
    Garcia MI; Karlstaedt A; Chen JJ; Amione-Guerra J; Youker KA; Taegtmeyer H; Boehning D
    J Mol Cell Cardiol; 2017 Nov; 112():95-103. PubMed ID: 28923351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The IP3 receptor regulates cardiac hypertrophy in response to select stimuli.
    Nakayama H; Bodi I; Maillet M; DeSantiago J; Domeier TL; Mikoshiba K; Lorenz JN; Blatter LA; Bers DM; Molkentin JD
    Circ Res; 2010 Sep; 107(5):659-66. PubMed ID: 20616315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress.
    Zhang Y; Chen W; Wang Y
    Biomed Pharmacother; 2020 May; 125():110022. PubMed ID: 32106379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herpud1 modulates hypertrophic signals independently of calmodulin nuclear translocation in rat myocardium-derived H9C2 cells.
    Fujioka R; Yamamoto T; Maruta A; Nakamura Y; Tominaga N; Inamitsu M; Oda T; Kobayashi S; Yano M
    Biochem Biophys Res Commun; 2023 Apr; 652():61-67. PubMed ID: 36812708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-κB pathway.
    Zhou H; Li N; Yuan Y; Jin YG; Wu Q; Yan L; Bian ZY; Deng W; Shen DF; Li H; Tang QZ
    J Mol Med (Berl); 2020 May; 98(5):691-705. PubMed ID: 32280997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor.
    Paredes F; Parra V; Torrealba N; Navarro-Marquez M; Gatica D; Bravo-Sagua R; Troncoso R; Pennanen C; Quiroga C; Chiong M; Caesar C; Taylor WR; Molgó J; San Martin A; Jaimovich E; Lavandero S
    Free Radic Biol Med; 2016 Jan; 90():206-18. PubMed ID: 26616647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal calcium sensor-1 promotes immature heart function and hypertrophy by enhancing Ca2+ signals.
    Nakamura TY; Jeromin A; Mikoshiba K; Wakabayashi S
    Circ Res; 2011 Aug; 109(5):512-23. PubMed ID: 21737792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromogranins and inositol 1,4,5-trisphosphate-dependent Ca(2+)-signaling in cardiomyopathy and heart failure.
    Yoo SH
    Curr Med Chem; 2012; 19(24):4068-73. PubMed ID: 22834797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel.
    Vervloessem T; Yule DI; Bultynck G; Parys JB
    Biochim Biophys Acta; 2015 Sep; 1853(9):1992-2005. PubMed ID: 25499268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum-mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes.
    Seidlmayer LK; Kuhn J; Berbner A; Arias-Loza PA; Williams T; Kaspar M; Czolbe M; Kwong JQ; Molkentin JD; Heinze KG; Dedkova EN; Ritter O
    Cardiovasc Res; 2016 Oct; 112(1):491-501. PubMed ID: 27496868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear inositol 1,4,5-trisphosphate is a necessary and conserved signal for the induction of both pathological and physiological cardiomyocyte hypertrophy.
    Arantes LA; Aguiar CJ; Amaya MJ; Figueiró NC; Andrade LM; Rocha-Resende C; Resende RR; Franchini KG; Guatimosim S; Leite MF
    J Mol Cell Cardiol; 2012 Oct; 53(4):475-86. PubMed ID: 22766271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload.
    Chen C; Zou LX; Lin QY; Yan X; Bi HL; Xie X; Wang S; Wang QS; Zhang YL; Li HH
    Redox Biol; 2019 Jan; 20():390-401. PubMed ID: 30412827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1α Mechanisms.
    Kumar S; Wang G; Liu W; Ding W; Dong M; Zheng N; Ye H; Liu J
    Hypertension; 2018 Aug; 72(2):331-342. PubMed ID: 29891648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of calcium‑sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy.
    Liu L; Wang C; Lin Y; Xi Y; Li H; Shi S; Li H; Zhang W; Zhao Y; Tian Y; Xu C; Wang L
    Mol Med Rep; 2016 Jul; 14(1):111-20. PubMed ID: 27176663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of inositol 1,4,5-trisphosphate receptor type 1 in ATP-induced nuclear Ca
    Kim JC; Son MJ; Le QA; Woo SH
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2998-3002. PubMed ID: 30122316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1,4,5-trisphosphate receptors and Ca(2+) release.
    Son MJ; Kim JC; Kim SW; Chidipi B; Muniyandi J; Singh TD; So I; Subedi KP; Woo SH
    J Physiol; 2016 Jun; 594(11):2985-3004. PubMed ID: 26751048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HERPUD1 governs tumor cell mitochondrial function via inositol 1,4,5-trisphosphate receptor-mediated calcium signaling.
    Paredes F; Navarro-Marquez M; Quiroga C; Jiménez-Gallegos D; Yeligar SM; Parra V; Müller M; Chiong M; Quest AFG; San Martin A; Lavandero S
    Free Radic Biol Med; 2024 Feb; 211():24-34. PubMed ID: 38043868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure.
    Lu FH; Fu SB; Leng X; Zhang X; Dong S; Zhao YJ; Ren H; Li H; Zhong X; Xu CQ; Zhang WH
    Cell Physiol Biochem; 2013; 31(4-5):728-43. PubMed ID: 23711498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca
    Navarro-Marquez M; Torrealba N; Troncoso R; Vásquez-Trincado C; Rodriguez M; Morales PE; Villalobos E; Eura Y; Garcia L; Chiong M; Klip A; Jaimovich E; Kokame K; Lavandero S
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt A):1653-1662. PubMed ID: 29486284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.