BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29042675)

  • 1. Optical switching of defect charge states in 4H-SiC.
    Golter DA; Lai CW
    Sci Rep; 2017 Oct; 7(1):13406. PubMed ID: 29042675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical charge state control of spin defects in 4H-SiC.
    Wolfowicz G; Anderson CP; Yeats AL; Whiteley SJ; Niklas J; Poluektov OG; Heremans FJ; Awschalom DD
    Nat Commun; 2017 Nov; 8(1):1876. PubMed ID: 29192288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrometry by optical charge conversion of deep defects in 4H-SiC.
    Wolfowicz G; Whiteley SJ; Awschalom DD
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):7879-7883. PubMed ID: 30012622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Gap Tuning and Carrier Dynamics in Colloidal Ge1-xSnx Quantum Dots.
    Hafiz SA; Esteves RJ; Demchenko DO; Arachchige IU; Özgür Ü
    J Phys Chem Lett; 2016 Sep; 7(17):3295-301. PubMed ID: 27513723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation Energy Dependence of the Photoluminescence Quantum Yields of Core and Core/Shell Quantum Dots.
    Hoy J; Morrison PJ; Steinberg LK; Buhro WE; Loomis RA
    J Phys Chem Lett; 2013 Jun; 4(12):2053-60. PubMed ID: 26283252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp
    Kim Y; Velizhanin KA; He X; Sarpkaya I; Yomogida Y; Tanaka T; Kataura H; Doorn SK; Htoon H
    J Phys Chem Lett; 2019 Mar; 10(6):1423-1430. PubMed ID: 30848914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles.
    Green TD; Yi C; Zeng C; Jin R; McGill S; Knappenberger KL
    J Phys Chem A; 2014 Nov; 118(45):10611-21. PubMed ID: 25226506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold.
    Tian Y; Peter M; Unger E; Abdellah M; Zheng K; Pullerits T; Yartsev A; Sundström V; Scheblykin IG
    Phys Chem Chem Phys; 2015 Oct; 17(38):24978-87. PubMed ID: 26343504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for "dark charge" from photoluminescence measurements in wide InGaN quantum wells.
    Bercha A; Trzeciakowski W; Muziol G; Tomm JW; Suski T
    Opt Express; 2023 Jan; 31(2):3227-3236. PubMed ID: 36785319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Gating of Photoluminescence from Color Centers in Hexagonal Boron Nitride.
    Khatri P; Ramsay AJ; Malein RNE; Chong HMH; Luxmoore IJ
    Nano Lett; 2020 Jun; 20(6):4256-4263. PubMed ID: 32383892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe
    Zhang M; Fu J; Dias AC; Qu F
    J Phys Condens Matter; 2018 Jul; 30(26):265502. PubMed ID: 29775182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible photo- and thermal-effects on the luminescence of gold nanoclusters: implications for nanothermometry.
    Valenta J; Greben M; Pramanik G; Kvakova K; Cigler P
    Phys Chem Chem Phys; 2021 May; 23(20):11954-11960. PubMed ID: 34002180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Time resolved photoluminescence of ZnO nanoparticles under low photon energy excitation].
    Wang XF; Xie PB; Zhao FL; Wang HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1160-3. PubMed ID: 19650443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of time-resolved photoluminescence in closely packed alignment of Si nanodisks with SiC barriers.
    Kiba T; Mizushima Y; Igarashi M; Huang CH; Samukawa S; Murayama A
    Nanoscale Res Lett; 2013 May; 8(1):223. PubMed ID: 23663680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced cavity coupling to silicon vacancies in 4H silicon carbide using laser irradiation and thermal annealing.
    Gadalla MN; Greenspon AS; Defo RK; Zhang X; Hu EL
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33731479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence dynamics and fine structure of dark excitons in semiconducting single-wall carbon nanotubes.
    Alfonsi J; Meneghetti M
    J Phys Condens Matter; 2012 Jun; 24(25):255501. PubMed ID: 22647714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast optoelectronic charge state conversion of silicon vacancies in diamond.
    Rieger M; Villafañe V; Todenhagen LM; Matthies S; Appel S; Brandt MS; Müller K; Finley JJ
    Sci Adv; 2024 Feb; 10(8):eadl4265. PubMed ID: 38381816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of quantum dot luminescence excitation within implanted SiO2:Si:C films.
    Zatsepin AF; Buntov EA; Kortov VS; Tetelbaum DI; Mikhaylov AN; Belov AI
    J Phys Condens Matter; 2012 Feb; 24(4):045301. PubMed ID: 22214549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding.
    Nan H; Wang Z; Wang W; Liang Z; Lu Y; Chen Q; He D; Tan P; Miao F; Wang X; Wang J; Ni Z
    ACS Nano; 2014 Jun; 8(6):5738-45. PubMed ID: 24836121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.