These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 29043030)
1. The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass. Yu K; D'Odorico P; Carr DE; Personius A; Collins SL Ecol Evol; 2017 Oct; 7(19):7739-7749. PubMed ID: 29043030 [TBL] [Abstract][Full Text] [Related]
2. Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant. Yu K; D'Odorico P; Li W; He Y Oecologia; 2017 Jun; 184(2):351-361. PubMed ID: 28401290 [TBL] [Abstract][Full Text] [Related]
3. Leaf carbohydrates influence transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in the facultative CAM plant, Mesembryanthemum crystallinum. Taybi T; Cushman JC; Borland AM J Plant Physiol; 2017 Nov; 218():144-154. PubMed ID: 28822907 [TBL] [Abstract][Full Text] [Related]
4. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C Wakamatsu A; Mori IC; Matsuura T; Taniwaki Y; Ishii R; Yoshida R J Plant Physiol; 2021 Jul; 262():153448. PubMed ID: 34058643 [TBL] [Abstract][Full Text] [Related]
5. Physiological Changes in Guan Q; Tan B; Kelley TM; Tian J; Chen S Front Plant Sci; 2020; 11():283. PubMed ID: 32256510 [TBL] [Abstract][Full Text] [Related]
6. Shifting photosynthesis between the fast and slow lane: Facultative CAM and water-deficit stress. Winter K; Holtum JAM J Plant Physiol; 2024 Mar; 294():154185. PubMed ID: 38373389 [TBL] [Abstract][Full Text] [Related]
7. Drought does not induce crassulacean acid metabolism (CAM) but regulates photosynthesis and enhances nutritional quality of Mesembryanthemum crystallinum. He J; Chua EL; Qin L PLoS One; 2020; 15(3):e0229897. PubMed ID: 32142525 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C Guan Q; Kong W; Zhu D; Zhu W; Dufresne C; Tian J; Chen S J Proteomics; 2021 Jan; 231():104019. PubMed ID: 33075550 [TBL] [Abstract][Full Text] [Related]
9. Plant Growth and Photosynthetic Characteristics of He J; Qin L; Chong EL; Choong TW; Lee SK Front Plant Sci; 2017; 8():361. PubMed ID: 28367156 [No Abstract] [Full Text] [Related]
10. The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C(3)-CAM species. Winter K; Holtum JA Planta; 2005 Sep; 222(1):201-9. PubMed ID: 15968514 [TBL] [Abstract][Full Text] [Related]
11. Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. Broetto F; Monteiro Duarte H; Lüttge U J Plant Physiol; 2007 Jul; 164(7):904-12. PubMed ID: 16781797 [TBL] [Abstract][Full Text] [Related]
12. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Neuhaus HE; Schulte N Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):945-53. PubMed ID: 8836142 [TBL] [Abstract][Full Text] [Related]
13. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). Cushman JC; Tillett RL; Wood JA; Branco JM; Schlauch KA J Exp Bot; 2008; 59(7):1875-94. PubMed ID: 18319238 [TBL] [Abstract][Full Text] [Related]
14. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid. Chu C; Dai Z; Ku MS; Edwards GE Plant Physiol; 1990 Jul; 93(3):1253-60. PubMed ID: 16667587 [TBL] [Abstract][Full Text] [Related]
15. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C Kong W; Yoo MJ; Zhu D; Noble JD; Kelley TM; Li J; Kirst M; Assmann SM; Chen S Plant Mol Biol; 2020 Aug; 103(6):653-667. PubMed ID: 32468353 [TBL] [Abstract][Full Text] [Related]
16. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum. Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507 [TBL] [Abstract][Full Text] [Related]
17. Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C(3)-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Slesak I; Karpinska B; Surówka E; Miszalski Z; Karpinski S Plant Cell Physiol; 2003 Jun; 44(6):573-81. PubMed ID: 12826622 [TBL] [Abstract][Full Text] [Related]
18. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Winter K; Holtum JA J Exp Bot; 2014 Jul; 65(13):3425-41. PubMed ID: 24642847 [TBL] [Abstract][Full Text] [Related]
19. Influence of leaf water content on the C Herppich WB; Herppich M New Phytol; 1997 Jul; 136(3):425-432. PubMed ID: 33863001 [TBL] [Abstract][Full Text] [Related]
20. Salt Requirement for Crassulacean Acid Metabolism in the Annual Succulent, Mesembryanthemum crystallinum. Bloom AJ Plant Physiol; 1979 Apr; 63(4):749-53. PubMed ID: 16660805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]