These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29043626)

  • 1. DNA Replication Profiling Using Deep Sequencing.
    Saayman X; Ramos-Pérez C; Brown GW
    Methods Mol Biol; 2018; 1672():195-207. PubMed ID: 29043626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Replicative Polymerase Usage by Ribonucleotide Incorporation.
    Keszthelyi A; Miyabe I; Ptasińska K; Daigaku Y; Naiman K; Carr AM
    Methods Mol Biol; 2018; 1672():239-259. PubMed ID: 29043629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination.
    McGuffee SR; Smith DJ; Whitehouse I
    Mol Cell; 2013 Apr; 50(1):123-35. PubMed ID: 23562327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of genome replication using deep sequencing.
    Müller CA; Hawkins M; Retkute R; Malla S; Wilson R; Blythe MJ; Nakato R; Komata M; Shirahige K; de Moura AP; Nieduszynski CA
    Nucleic Acids Res; 2014 Jan; 42(1):e3. PubMed ID: 24089142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.
    Orebaugh CD; Lujan SA; Burkholder AB; Clausen AR; Kunkel TA
    Methods Mol Biol; 2018; 1672():329-345. PubMed ID: 29043634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian inference of origin firing time distributions, origin interference and licencing probabilities from Next Generation Sequencing data.
    Bazarova A; Nieduszynski CA; Akerman I; Burroughs NJ
    Nucleic Acids Res; 2019 Mar; 47(5):2229-2243. PubMed ID: 30859196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Versatile Procedure to Generate Genome-Wide Spatiotemporal Program of Replication in Yeast Species.
    Agier N; Fischer G
    Methods Mol Biol; 2016; 1361():247-64. PubMed ID: 26483026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Bromodeoxyuridine Immunoprecipitation Analyzed by High-Throughput Sequencing (qBrdU-Seq or QBU).
    Haye-Bertolozzi JE; Aparicio OM
    Methods Mol Biol; 2018; 1672():209-225. PubMed ID: 29043627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA copy-number measurement of genome replication dynamics by high-throughput sequencing: the sort-seq, sync-seq and MFA-seq family.
    Batrakou DG; Müller CA; Wilson RHC; Nieduszynski CA
    Nat Protoc; 2020 Mar; 15(3):1255-1284. PubMed ID: 32051615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.
    Hoggard T; Liachko I; Burt C; Meikle T; Jiang K; Craciun G; Dunham MJ; Fox CA
    G3 (Bethesda); 2016 Apr; 6(4):993-1012. PubMed ID: 26865697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads.
    Müller CA; Boemo MA; Spingardi P; Kessler BM; Kriaucionis S; Simpson JT; Nieduszynski CA
    Nat Methods; 2019 May; 16(5):429-436. PubMed ID: 31011185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring early S-phase origin firing and replication fork movement by sequencing nascent DNA from synchronized cells.
    Macheret M; Halazonetis TD
    Nat Protoc; 2019 Jan; 14(1):51-67. PubMed ID: 30487655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication fork progression is paused in two large chromosomal zones flanking the DNA replication origin in Escherichia coli.
    Akiyama MT; Oshima T; Chumsakul O; Ishikawa S; Maki H
    Genes Cells; 2016 Aug; 21(8):907-14. PubMed ID: 27353572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based analysis of DNA replication profiles: predicting replication fork velocity and initiation rate by profiling free-cycling cells.
    Gispan A; Carmi M; Barkai N
    Genome Res; 2017 Feb; 27(2):310-319. PubMed ID: 28028072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq).
    Keszthelyi A; Daigaku Y; Ptasińska K; Miyabe I; Carr AM
    Nat Protoc; 2015 Nov; 10(11):1786-801. PubMed ID: 26492137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A user-friendly computational workflow for the analysis of microRNA deep sequencing data.
    Majer A; Caligiuri KA; Booth SA
    Methods Mol Biol; 2013; 936():35-45. PubMed ID: 23007497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription.
    Hoffman EA; McCulley A; Haarer B; Arnak R; Feng W
    Genome Res; 2015 Mar; 25(3):402-12. PubMed ID: 25609572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.