These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29043627)

  • 1. Quantitative Bromodeoxyuridine Immunoprecipitation Analyzed by High-Throughput Sequencing (qBrdU-Seq or QBU).
    Haye-Bertolozzi JE; Aparicio OM
    Methods Mol Biol; 2018; 1672():209-225. PubMed ID: 29043627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Genome-Wide Nascent Nucleosome Assembly Using ReIN-Map.
    Xu Z; Feng J; Li Q
    Methods Mol Biol; 2021; 2196():117-141. PubMed ID: 32889717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads.
    Müller CA; Boemo MA; Spingardi P; Kessler BM; Kriaucionis S; Simpson JT; Nieduszynski CA
    Nat Methods; 2019 May; 16(5):429-436. PubMed ID: 31011185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale.
    Zatopek KM; Potapov V; Maduzia LL; Alpaslan E; Chen L; Evans TC; Ong JL; Ettwiller LM; Gardner AF
    DNA Repair (Amst); 2019 Aug; 80():36-44. PubMed ID: 31247470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae.
    Viggiani CJ; Knott SR; Aparicio OM
    Cold Spring Harb Protoc; 2010 Feb; 2010(2):pdb.prot5385. PubMed ID: 20150148
    [No Abstract]   [Full Text] [Related]  

  • 7. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.
    Chabbert CD; Adjalley SH; Steinmetz LM; Pelechano V
    Methods Mol Biol; 2018; 1689():177-194. PubMed ID: 29027175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication fork progression is paused in two large chromosomal zones flanking the DNA replication origin in Escherichia coli.
    Akiyama MT; Oshima T; Chumsakul O; Ishikawa S; Maki H
    Genes Cells; 2016 Aug; 21(8):907-14. PubMed ID: 27353572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing.
    Hennion M; Arbona JM; Lacroix L; Cruaud C; Theulot B; Tallec BL; Proux F; Wu X; Novikova E; Engelen S; Lemainque A; Audit B; Hyrien O
    Genome Biol; 2020 May; 21(1):125. PubMed ID: 32456659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq.
    Marchal C; Sasaki T; Vera D; Wilson K; Sima J; Rivera-Mulia JC; Trevilla-García C; Nogues C; Nafie E; Gilbert DM
    Nat Protoc; 2018 May; 13(5):819-839. PubMed ID: 29599440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New vectors for simplified construction of BrdU-Incorporating strains of Saccharomyces cerevisiae.
    Viggiani CJ; Aparicio OM
    Yeast; 2006; 23(14-15):1045-51. PubMed ID: 17083135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Replication Profiling Using Deep Sequencing.
    Saayman X; Ramos-Pérez C; Brown GW
    Methods Mol Biol; 2018; 1672():195-207. PubMed ID: 29043626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq).
    Keszthelyi A; Daigaku Y; Ptasińska K; Miyabe I; Carr AM
    Nat Protoc; 2015 Nov; 10(11):1786-801. PubMed ID: 26492137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale analysis of replication timing: from bench to bioinformatics.
    Ryba T; Battaglia D; Pope BD; Hiratani I; Gilbert DM
    Nat Protoc; 2011 Jun; 6(6):870-95. PubMed ID: 21637205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.
    Orebaugh CD; Lujan SA; Burkholder AB; Clausen AR; Kunkel TA
    Methods Mol Biol; 2018; 1672():329-345. PubMed ID: 29043634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA copy-number measurement of genome replication dynamics by high-throughput sequencing: the sort-seq, sync-seq and MFA-seq family.
    Batrakou DG; Müller CA; Wilson RHC; Nieduszynski CA
    Nat Protoc; 2020 Mar; 15(3):1255-1284. PubMed ID: 32051615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of Proteins Bound to Nascent DNA in Mammalian Cells Using BrdU-ChIP-Slot-Western Technique.
    Bhaskara S
    J Vis Exp; 2016 Jan; (107):e53647. PubMed ID: 26863264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing.
    Bianco JN; Poli J; Saksouk J; Bacal J; Silva MJ; Yoshida K; Lin YL; Tourrière H; Lengronne A; Pasero P
    Methods; 2012 Jun; 57(2):149-57. PubMed ID: 22579803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating barcoded libraries for multiplex high-throughput sequencing.
    Knapp M; Stiller M; Meyer M
    Methods Mol Biol; 2012; 840():155-70. PubMed ID: 22237533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.