These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29043641)

  • 1. Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.
    Williams GM; Surtees JA
    Methods Mol Biol; 2018; 1672():439-470. PubMed ID: 29043641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae.
    Williams GM; Petrides AK; Balakrishnan L; Surtees JA
    Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
    Bhattacharyya S; Lahue RS
    Mol Cell Biol; 2004 Sep; 24(17):7324-30. PubMed ID: 15314145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA elements important for CAG*CTG repeat thresholds in Saccharomyces cerevisiae.
    Dixon MJ; Lahue RS
    Nucleic Acids Res; 2004; 32(4):1289-97. PubMed ID: 14982954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.
    Rolfsmeier ML; Dixon MJ; Pessoa-Brandão L; Pelletier R; Miret JJ; Lahue RS
    Genetics; 2001 Apr; 157(4):1569-79. PubMed ID: 11290713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae.
    Polleys EJ; Freudenreich CH
    Methods Mol Biol; 2018; 1672():403-419. PubMed ID: 29043639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a Yeast Experimental System.
    Radchenko EA; McGinty RJ; Aksenova AY; Neil AJ; Mirkin SM
    Methods Mol Biol; 2018; 1672():421-438. PubMed ID: 29043640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases.
    Freudenreich CH; Lahiri M
    Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion and length-dependent fragility of CTG repeats in yeast.
    Freudenreich CH; Kantrow SM; Zakian VA
    Science; 1998 Feb; 279(5352):853-6. PubMed ID: 9452383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome.
    Freudenreich CH; Stavenhagen JB; Zakian VA
    Mol Cell Biol; 1997 Apr; 17(4):2090-8. PubMed ID: 9121457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast.
    Jankowski C; Nasar F; Nag DK
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2134-9. PubMed ID: 10681451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic assays for triplet repeat instability in yeast.
    Dixon MJ; Bhattacharyya S; Lahue RS
    Methods Mol Biol; 2004; 277():29-45. PubMed ID: 15201447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.