These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29043647)

  • 1. The CellClamper: A Convenient Microfluidic Device for Time-Lapse Imaging of Yeast.
    Schmidt GW; Frey O; Rudolf F
    Methods Mol Biol; 2018; 1672():537-555. PubMed ID: 29043647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device.
    Schlimpert S; Flärdh K; Buttner J
    J Vis Exp; 2016 Feb; (108):53863. PubMed ID: 26967231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level.
    Fu W; Wang S; Ouyang Q; Luo C
    Integr Biol (Camb); 2024 Jan; 16():. PubMed ID: 38900168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic-Based Microscopy Platform for Continuous Interrogation of Trypanosoma brucei during Environmental Perturbation.
    Voyton CM; Choi J; Qiu Y; Morris MT; Ackroyd PC; Morris JC; Christensen KA
    Biochemistry; 2019 Feb; 58(7):875-882. PubMed ID: 30638014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile on-stage microfluidic system for long term cell culture, micromanipulation and time lapse assays.
    Huang YX; He CL; Wang P; Pan YT; Tuo WW; Yao CC
    Biosens Bioelectron; 2018 Mar; 101():66-74. PubMed ID: 29040916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivation and quantitative single-cell analysis of Saccharomyces cerevisiae on a multifunctional microfluidic device.
    Stratz S; Verboket PE; Hasler K; Dittrich PS
    Electrophoresis; 2018 Feb; 39(3):540-547. PubMed ID: 28880404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability.
    Gencturk E; Yurdakul E; Celik AY; Mutlu S; Ulgen KO
    Biomed Microdevices; 2020 Feb; 22(1):20. PubMed ID: 32078073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of Enzyme Kinetics on a Microfluidic Device.
    Rho HS; Hanke AT; Ottens M; Gardeniers H
    PLoS One; 2016; 11(4):e0153437. PubMed ID: 27082243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.
    Krämer CE; Wiechert W; Kohlheyer D
    Sci Rep; 2016 Sep; 6():32104. PubMed ID: 27580964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilayer microfluidic chip for diffusion-controlled activation of yeast species.
    Kurth F; Schumann CA; Blank LM; Schmid A; Manz A; Dittrich PS
    J Chromatogr A; 2008 Oct; 1206(1):77-82. PubMed ID: 18701110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of chromosome dynamics of single yeast cells in a microfluidic platform with aperture cell traps.
    Jin SH; Jang SC; Lee B; Jeong HH; Jeong SG; Lee SS; Kim KP; Lee CS
    Lab Chip; 2016 Apr; 16(8):1358-65. PubMed ID: 26980179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    García-Alonso J; Greenway GM; Hardege JD; Haswell SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1508-11. PubMed ID: 18805688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel microfluidic capture and monitoring method for assessing physiological damage of C. elegans under microgravity.
    Wang J; Meng J; Ding G; Kang Y; Zhao W
    Electrophoresis; 2019 Mar; 40(6):922-929. PubMed ID: 30597589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile, simple-to-use microfluidic cell-culturing chip for long-term, high-resolution, time-lapse imaging.
    Frey O; Rudolf F; Schmidt GW; Hierlemann A
    Anal Chem; 2015 Apr; 87(8):4144-51. PubMed ID: 25837982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.
    Luke CS; Selimkhanov J; Baumgart L; Cohen SE; Golden SS; Cookson NA; Hasty J
    ACS Synth Biol; 2016 Jan; 5(1):8-14. PubMed ID: 26332284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic system for long-term time-lapse microscopy studies of mycobacteria.
    Golchin SA; Stratford J; Curry RJ; McFadden J
    Tuberculosis (Edinb); 2012 Nov; 92(6):489-96. PubMed ID: 22954584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated microfluidic device for the sorting of yeast cells using image processing.
    Yu BY; Elbuken C; Shen C; Huissoon JP; Ren CL
    Sci Rep; 2018 Feb; 8(1):3550. PubMed ID: 29476103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.