These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29043647)

  • 21. Microscreening toxicity system based on living magnetic yeast and gradient chips.
    García-Alonso J; Fakhrullin RF; Paunov VN; Shen Z; Hardege JD; Pamme N; Haswell SJ; Greenway GM
    Anal Bioanal Chem; 2011 May; 400(4):1009-13. PubMed ID: 20924564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.
    Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectories.
    Amitai A; Seeber A; Gasser SM; Holcman D
    Cell Rep; 2017 Jan; 18(5):1200-1214. PubMed ID: 28147275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased genome instability is not accompanied by sensitivity to DNA damaging agents in aged yeast cells.
    Novarina D; Mavrova SN; Janssens GE; Rempel IL; Veenhoff LM; Chang M
    DNA Repair (Amst); 2017 Jun; 54():1-7. PubMed ID: 28384494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lab-On-A-Chip Device for Yeast Cell Characterization in Low-Conductivity Media Combining Cytometry and Bio-Impedance.
    Claudel J; Alves De Araujo AL; Nadi M; Kourtiche D
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy.
    Dhar N; Manina G
    Methods Mol Biol; 2015; 1285():241-56. PubMed ID: 25779320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic perfusion system for culturing and imaging yeast cell microarrays and rapidly exchanging media.
    Mirzaei M; Pla-Roca M; Safavieh R; Nazarova E; Safavieh M; Li H; Vogel J; Juncker D
    Lab Chip; 2010 Sep; 10(18):2449-57. PubMed ID: 20714499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple culture system for long-term imaging of individual C. elegans.
    Pittman WE; Sinha DB; Zhang WB; Kinser HE; Pincus Z
    Lab Chip; 2017 Nov; 17(22):3909-3920. PubMed ID: 29063084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-lapse lens-free imaging of cell migration in diverse physical microenvironments.
    Mathieu E; Paul CD; Stahl R; Vanmeerbeeck G; Reumers V; Liu C; Konstantopoulos K; Lagae L
    Lab Chip; 2016 Aug; 16(17):3304-16. PubMed ID: 27436197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy.
    Mazo-Vargas A; Park H; Aydin M; Buchler NE
    Mol Biol Cell; 2014 Nov; 25(22):3699-708. PubMed ID: 25232010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH).
    Ferreira AM; Cruz-Moreira D; Cerqueira L; Miranda JM; Azevedo NF
    Biomed Microdevices; 2017 Mar; 19(1):11. PubMed ID: 28144839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic device for automated synchronization of bacterial cells.
    Madren SM; Hoffman MD; Brown PJ; Kysela DT; Brun YV; Jacobson SC
    Anal Chem; 2012 Oct; 84(20):8571-8. PubMed ID: 23030473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
    Bascom CS; Wu SZ; Nelson K; Oakey J; Bezanilla M
    Plant Physiol; 2016 Sep; 172(1):28-37. PubMed ID: 27406170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring bacterial adaptation dynamics at the single-cell level using a microfluidic chemostat and time-lapse fluorescence microscopy.
    Long Z; Olliver A; Brambilla E; Sclavi B; Lagomarsino MC; Dorfman KD
    Analyst; 2014 Oct; 139(20):5254-62. PubMed ID: 25137302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lab-on-Chip for fast 3D particle tracking in living cells.
    Hajjoul H; Kocanova S; Lassadi I; Bystricky K; Bancaud A
    Lab Chip; 2009 Nov; 9(21):3054-8. PubMed ID: 19823719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.
    Hernández Vera R; Schwan E; Fatsis-Kavalopoulos N; Kreuger J
    PLoS One; 2016; 11(12):e0167583. PubMed ID: 28002463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformability-based microfluidic cell pairing and fusion.
    Dura B; Liu Y; Voldman J
    Lab Chip; 2014 Aug; 14(15):2783-90. PubMed ID: 24898933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices.
    Mondal S; Ahlawat S; Rau K; Venkataraman V; Koushika SP
    Traffic; 2011 Apr; 12(4):372-85. PubMed ID: 21199219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.