BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29043824)

  • 21. Building interconnected membrane networks.
    Holden MA
    Methods Cell Biol; 2015; 128():201-22. PubMed ID: 25997349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Layer-by-layer assembly of multi-layered droplet interface bilayers (multi-DIBs).
    Allen ME; Albon J; Elani Y
    Chem Commun (Camb); 2021 Dec; 58(1):60-63. PubMed ID: 34877578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activating mechanosensitive channels embedded in droplet interface bilayers using membrane asymmetry.
    Strutt R; Hindley JW; Gregg J; Booth PJ; Harling JD; Law RV; Friddin MS; Ces O
    Chem Sci; 2021 Jan; 12(6):2138-2145. PubMed ID: 34163978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of temperature in the formation of human-mimetic artificial cell membranes using droplet interface bilayers (DIBs).
    Korner JL; Elvira KS
    Soft Matter; 2021 Oct; 17(39):8891-8901. PubMed ID: 34543370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust reagent addition and perfusion strategies for droplet-interface bilayers.
    Lein M; Huang J; Holden MA
    Lab Chip; 2013 Jul; 13(14):2749-53. PubMed ID: 23685850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel magnet-actuated droplet manipulation platform using a floating ferrofluid film.
    Yang C; Li G
    Sci Rep; 2017 Nov; 7(1):15705. PubMed ID: 29146931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering plant membranes using droplet interface bilayers.
    Barlow NE; Smpokou E; Friddin MS; Macey R; Gould IR; Turnbull C; Flemming AJ; Brooks NJ; Ces O; Barter LM
    Biomicrofluidics; 2017 Mar; 11(2):024107. PubMed ID: 28396711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane protein mediated bilayer communication in networks of droplet interface bilayers.
    Haylock S; Friddin MS; Hindley JW; Rodriguez E; Charalambous K; Booth PJ; Barter LMC; Ces O
    Commun Chem; 2020 Jun; 3():77. PubMed ID: 34113722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet-interface-bilayer assays in microfluidic passive networks.
    Schlicht B; Zagnoni M
    Sci Rep; 2015 Apr; 5():9951. PubMed ID: 25909686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress.
    Barlow NE; Bolognesi G; Haylock S; Flemming AJ; Brooks NJ; Barter LMC; Ces O
    Sci Rep; 2017 Dec; 7(1):17551. PubMed ID: 29242597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Formation of Honeycomb-Patterned Droplets Bounded by Interface Bilayers via Bimodal Molecular Adsorption.
    Fujiwara S; Shoji K; Watanabe C; Kawano R; Yanagisawa M
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids.
    Venkatesan GA; Taylor GJ; Basham CM; Brady NG; Collier CP; Sarles SA
    Biomicrofluidics; 2018 Mar; 12(2):024101. PubMed ID: 29576833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating Membrane Transporter Proteins into Droplet Interface Bilayers.
    Findlay HE; Harris NJ; Booth PJ
    Methods Mol Biol; 2021; 2315():31-41. PubMed ID: 34302668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctional, Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers.
    Najem JS; Dunlap MD; Yasmann A; Freeman EC; Grant JW; Sukharev S; Leo DJ
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks.
    Sarles SA; Leo DJ
    Lab Chip; 2010 Mar; 10(6):710-7. PubMed ID: 20221558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the effect of phospholipids on droplet formation and surface property evolution in microfluidic devices for droplet interface bilayer (DIB) formation.
    Stephenson EB; García Ramírez R; Farley S; Adolph-Hammond K; Lee G; Frostad JM; Elvira KS
    Biomicrofluidics; 2022 Jul; 16(4):044112. PubMed ID: 36035888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer.
    Huang J; Lein M; Gunderson C; Holden MA
    J Am Chem Soc; 2011 Oct; 133(40):15818-21. PubMed ID: 21838329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Morphologies and Stability of Droplet Interface Bilayers.
    Guiselin B; Law JO; Chakrabarti B; Kusumaatmaja H
    Phys Rev Lett; 2018 Jun; 120(23):238001. PubMed ID: 29932701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation.
    Stanley CE; Elvira KS; Niu XZ; Gee AD; Ces O; Edel JB; Demello AJ
    Chem Commun (Camb); 2010 Mar; 46(10):1620-2. PubMed ID: 20177594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functionalisation of human chloride intracellular ion channels in microfluidic droplet-interface-bilayers.
    Zhang Y; Bracken H; Woolhead C; Zagnoni M
    Biosens Bioelectron; 2020 Feb; 150():111920. PubMed ID: 31791876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.