These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 29044175)

  • 1. A Skeletal Muscle Model of Infantile-onset Pompe Disease with Patient-specific iPS Cells.
    Yoshida T; Awaya T; Jonouchi T; Kimura R; Kimura S; Era T; Heike T; Sakurai H
    Sci Rep; 2017 Oct; 7(1):13473. PubMed ID: 29044175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Liver Model of Infantile-Onset Pompe Disease Using Patient-Specific Induced Pluripotent Stem Cells.
    Yoshida T; Jonouchi T; Osafune K; Takita J; Sakurai H
    Front Cell Dev Biol; 2019; 7():316. PubMed ID: 31850350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease.
    Wang J; Zhou CJ; Khodabukus A; Tran S; Han SO; Carlson AL; Madden L; Kishnani PS; Koeberl DD; Bursac N
    Commun Biol; 2021 May; 4(1):524. PubMed ID: 33953320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Therapy for Pompe Disease: The Time is now.
    Colella P; Mingozzi F
    Hum Gene Ther; 2019 Oct; 30(10):1245-1262. PubMed ID: 31298581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-mediated generation and characterization of a Gaa homozygous c.1935C>A (p.D645E) Pompe disease knock-in mouse model recapitulating human infantile onset-Pompe disease.
    Kan SH; Huang JY; Harb J; Rha A; Dalton ND; Christensen C; Chan Y; Davis-Turak J; Neumann J; Wang RY
    Sci Rep; 2022 Dec; 12(1):21576. PubMed ID: 36517654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.
    Shemesh A; Wang Y; Yang Y; Yang GS; Johnson DE; Backer JM; Pessin JE; Zong H
    Am J Physiol Regul Integr Comp Physiol; 2014 Nov; 307(10):R1251-9. PubMed ID: 25231351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness.
    Huang JY; Kan SH; Sandfeld EK; Dalton ND; Rangel AD; Chan Y; Davis-Turak J; Neumann J; Wang RY
    Sci Rep; 2020 Jun; 10(1):10321. PubMed ID: 32587263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.
    Yi H; Sun T; Armstrong D; Borneman S; Yang C; Austin S; Kishnani PS; Sun B
    J Mol Med (Berl); 2017 May; 95(5):513-521. PubMed ID: 28154884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy.
    Muñoz S; Bertolin J; Jimenez V; Jaén ML; Garcia M; Pujol A; Vilà L; Sacristan V; Barbon E; Ronzitti G; El Andari J; Tulalamba W; Pham QH; Ruberte J; VandenDriessche T; Chuah MK; Grimm D; Mingozzi F; Bosch F
    Mol Metab; 2024 Mar; 81():101899. PubMed ID: 38346589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of induced pluripotent stem cells (iPSCs) from patients with infantile and late-onset types of Pompe disease and the effects of treatment with acid-α-glucosidase in Pompe's iPSCs.
    Higuchi T; Kawagoe S; Otsu M; Shimada Y; Kobayashi H; Hirayama R; Eto K; Ida H; Ohashi T; Nakauchi H; Eto Y
    Mol Genet Metab; 2014 May; 112(1):44-8. PubMed ID: 24642446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase.
    Cagin U; Puzzo F; Gomez MJ; Moya-Nilges M; Sellier P; Abad C; Van Wittenberghe L; Daniele N; Guerchet N; Gjata B; Collaud F; Charles S; Sola MS; Boyer O; Krijnse-Locker J; Ronzitti G; Colella P; Mingozzi F
    Mol Ther; 2020 Sep; 28(9):2056-2072. PubMed ID: 32526204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers.
    Raben N; Fukuda T; Gilbert AL; de Jong D; Thurberg BL; Mattaliano RJ; Meikle P; Hopwood JJ; Nagashima K; Nagaraju K; Plotz PH
    Mol Ther; 2005 Jan; 11(1):48-56. PubMed ID: 15585405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease.
    Han SO; Li S; Bird A; Koeberl D
    Hum Gene Ther; 2015 Nov; 26(11):743-50. PubMed ID: 26417913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes.
    Raval KK; Tao R; White BE; De Lange WJ; Koonce CH; Yu J; Kishnani PS; Thomson JA; Mosher DF; Ralphe JC; Kamp TJ
    J Biol Chem; 2015 Jan; 290(5):3121-36. PubMed ID: 25488666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype, phenotype and treatment outcomes of 17 Malaysian patients with infantile-onset Pompe disease and the identification of 3 novel GAA variants.
    Chan MY; Jalil JA; Yakob Y; Wahab SAA; Ali EZ; Khalid MKNM; Leong HY; Chew HB; Sivabalakrishnan JB; Ngu LH
    Orphanet J Rare Dis; 2023 Aug; 18(1):231. PubMed ID: 37542277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomic Profiling of Pompe Disease-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals That Oxidative Stress Is Associated with Cardiac and Skeletal Muscle Pathology.
    Sato Y; Kobayashi H; Higuchi T; Shimada Y; Ida H; Ohashi T
    Stem Cells Transl Med; 2017 Jan; 6(1):31-39. PubMed ID: 28170191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease.
    Keeler AM; Zieger M; Todeasa SH; McCall AL; Gifford JC; Birsak S; Choudhury SR; Byrne BJ; Sena-Esteves M; ElMallah MK
    Hum Gene Ther; 2019 Jan; 30(1):57-68. PubMed ID: 29901418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysosomal glycogen accumulation in Pompe disease results in disturbed cytoplasmic glycogen metabolism.
    Canibano-Fraile R; Harlaar L; Dos Santos CA; Hoogeveen-Westerveld M; Demmers JAA; Snijders T; Lijnzaad P; Verdijk RM; van der Beek NAME; van Doorn PA; van der Ploeg AT; Brusse E; Pijnappel WWMP; Schaaf GJ
    J Inherit Metab Dis; 2023 Jan; 46(1):101-115. PubMed ID: 36111639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells.
    Kawagoe S; Higuchi T; Meng XL; Shimada Y; Shimizu H; Hirayama R; Fukuda T; Chang H; Nakahata T; Fukada S; Ida H; Kobayashi H; Ohashi T; Eto Y
    Mol Genet Metab; 2011; 104(1-2):123-8. PubMed ID: 21703893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa
    Sellier P; Vidal P; Bertin B; Gicquel E; Bertil-Froidevaux E; Georger C; van Wittenberghe L; Miranda A; Daniele N; Richard I; Gross DA; Mingozzi F; Collaud F; Ronzitti G
    J Inherit Metab Dis; 2024 Jan; 47(1):119-134. PubMed ID: 37204237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.