These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29044260)

  • 1. Molecular engineering of organic electroactive materials for redox flow batteries.
    Ding Y; Zhang C; Zhang L; Zhou Y; Yu G
    Chem Soc Rev; 2018 Jan; 47(1):69-103. PubMed ID: 29044260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Electroactive Materials for Aqueous Redox Flow Batteries.
    Yang G; Zhu Y; Hao Z; Lu Y; Zhao Q; Zhang K; Chen J
    Adv Mater; 2023 Aug; 35(33):e2301898. PubMed ID: 37158492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in the Development of Organic and Organometallic Redox Shuttles for Lithium-Ion Redox Flow Batteries.
    Pham-Truong TN; Wang Q; Ghilane J; Randriamahazaka H
    ChemSusChem; 2020 May; 13(9):2142-2159. PubMed ID: 32293115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries.
    Zhu F; Guo W; Fu Y
    Chem Asian J; 2023 Jan; 18(2):e202201098. PubMed ID: 36454229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility.
    Wedege K; Dražević E; Konya D; Bentien A
    Sci Rep; 2016 Dec; 6():39101. PubMed ID: 27966605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.
    Winsberg J; Hagemann T; Janoschka T; Hager MD; Schubert US
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):686-711. PubMed ID: 28070964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids.
    Chen R; Bresser D; Saraf M; Gerlach P; Balducci A; Kunz S; Schröder D; Passerini S; Chen J
    ChemSusChem; 2020 May; 13(9):2205-2219. PubMed ID: 31995281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies.
    Li Z; Lu YC
    Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters.
    Wang H; Sayed SY; Luber EJ; Olsen BC; Shirurkar SM; Venkatakrishnan S; Tefashe UM; Farquhar AK; Smotkin ES; McCreery RL; Buriak JM
    ACS Nano; 2020 Mar; 14(3):2575-2584. PubMed ID: 32180396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Promise of Environmentally Benign Redox Flow Batteries by Molecular Engineering.
    Ding Y; Yu G
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8614-8616. PubMed ID: 28387026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in High-voltage Aqueous Zinc-based Hybrid Redox Flow Batteries.
    Park J; Kim M; Choi J; Lee S; Kim J; Han D; Jang H; Park M
    Chem Asian J; 2023 Jan; 18(2):e202201052. PubMed ID: 36479849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes.
    McCormack PM; Koenig GM; Geise GM
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.