BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29044478)

  • 1. Enhanced pyruvate production in Candida glabrata by carrier engineering.
    Luo Z; Liu S; Du G; Xu S; Zhou J; Chen J
    Biotechnol Bioeng; 2018 Feb; 115(2):473-482. PubMed ID: 29044478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production.
    Li S; Liu L; Chen J
    Metab Eng; 2015 Mar; 28():1-7. PubMed ID: 25479455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System.
    Luo Z; Zeng W; Du G; Chen J; Zhou J
    ACS Synth Biol; 2019 Apr; 8(4):787-795. PubMed ID: 30856339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7591-8. PubMed ID: 27225475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata.
    Xu N; Liu L; Zou W; Liu J; Hua Q; Chen J
    Mol Biosyst; 2013 Feb; 9(2):205-16. PubMed ID: 23172360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced pyruvate production in Candida glabrata by overexpressing the CgAMD1 gene to improve acid tolerance.
    Wu J; Luo Q; Liu J; Chen X; Liu L
    Biotechnol Lett; 2018 Jan; 40(1):143-149. PubMed ID: 28983762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Significantly increase of glycolytic flux and pyruvate productivity in Torulopsis glabrata by heterologous expression of NADH alternative oxidase].
    Qin Y; Dong Z; Zhou J; Liu L; Chen J
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1483-8. PubMed ID: 20112677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Torulopsis glabrata for malate production.
    Chen X; Xu G; Xu N; Zou W; Zhu P; Liu L; Chen J
    Metab Eng; 2013 Sep; 19():10-6. PubMed ID: 23707987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate production in Candida glabrata: manipulation and optimization of physiological function.
    Li S; Chen X; Liu L; Chen J
    Crit Rev Biotechnol; 2016; 36(1):1-10. PubMed ID: 23883073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.
    Li S; Xu N; Liu L; Chen J
    Metab Eng; 2014 Mar; 22():32-9. PubMed ID: 24365210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [System metabolic engineering strategies for 2,3-butandione production by Torulopsis glabrata].
    Gao X; Xu N; Li S; Liu L
    Wei Sheng Wu Xue Bao; 2014 Apr; 54(4):398-407. PubMed ID: 25007652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis.
    Luo Z; Zeng W; Du G; Liu S; Fang F; Zhou J; Chen J
    Bioprocess Biosyst Eng; 2017 May; 40(5):693-701. PubMed ID: 28120126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial pyruvate carrier in Trypanosoma brucei.
    Štáfková J; Mach J; Biran M; Verner Z; Bringaud F; Tachezy J
    Mol Microbiol; 2016 May; 100(3):442-56. PubMed ID: 26748989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells.
    Bulté DB; Palomares LA; Parra CG; Martínez JA; Contreras MA; Noriega LG; Ramírez OT
    Biotechnol Bioeng; 2020 Sep; 117(9):2633-2647. PubMed ID: 32436990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter.
    Nagampalli RSK; Quesñay JEN; Adamoski D; Islam Z; Birch J; Sebinelli HG; Girard RMBM; Ascenção CFR; Fala AM; Pauletti BA; Consonni SR; de Oliveira JF; Silva ACT; Franchini KG; Leme AFP; Silber AM; Ciancaglini P; Moraes I; Dias SMG; Ambrosio ALB
    Sci Rep; 2018 Feb; 8(1):3510. PubMed ID: 29472561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial pyruvate transport: a historical perspective and future research directions.
    McCommis KS; Finck BN
    Biochem J; 2015 Mar; 466(3):443-54. PubMed ID: 25748677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes.
    Bender T; Pena G; Martinou JC
    EMBO J; 2015 Apr; 34(7):911-24. PubMed ID: 25672363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of novel MPC1 gene variants causing mitochondrial pyruvate carrier deficiency.
    Jiang H; Alahmad A; Fu S; Fu X; Liu Z; Han X; Li L; Song T; Xu M; Liu S; Wang J; Albash B; Alaqeel A; Catalina V; Prokisch H; Taylor RW; McFarland R; Fang F
    J Inherit Metab Dis; 2022 Mar; 45(2):264-277. PubMed ID: 34873722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of pyruvate productivity in Torulopsis glabrata: Increase of NAD+ availability.
    Liu L; Li Y; Shi Z; Du G; Chen J
    J Biotechnol; 2006 Nov; 126(2):173-85. PubMed ID: 16713000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Sequencing of the Pyruvate-producing Strain Candida glabrata CCTCC M202019 and Genomic Comparison with Strain CBS138.
    Xu N; Ye C; Chen X; Liu J; Liu L; Chen J
    Sci Rep; 2016 Oct; 6():34893. PubMed ID: 27713500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.