These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29044550)

  • 1. Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset.
    Orlando JI; van Keer K; Barbosa Breda J; Manterola HL; Blaschko MB; Clausse A
    Med Phys; 2017 Dec; 44(12):6425-6434. PubMed ID: 29044550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography angiography reveals progressive worsening of retinal vascular geometry in diabetic retinopathy and improved geometry after panretinal photocoagulation.
    Fayed AE; Abdelbaki AM; El Zawahry OM; Fawzi AA
    PLoS One; 2019; 14(12):e0226629. PubMed ID: 31887149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes.
    Popovic N; Radunovic M; Badnjar J; Popovic T
    Microvasc Res; 2018 Jul; 118():36-43. PubMed ID: 29476757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ensemble deep learning based approach for red lesion detection in fundus images.
    Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB
    Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage.
    Somfai GM; Tátrai E; Laurik L; Varga BE; Ölvedy V; Smiddy WE; Tchitnga R; Somogyi A; DeBuc DC
    BMC Bioinformatics; 2014 Sep; 15(1):295. PubMed ID: 25178846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
    Seoud L; Hurtut T; Chelbi J; Cheriet F; Langlois JM
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1116-26. PubMed ID: 26701180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis.
    Daxer A
    Curr Eye Res; 1993 Dec; 12(12):1103-9. PubMed ID: 8137633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of the neovascularisation process in diabetic retinopathy by means of fractal geometry: diagnostic implications.
    Daxer A
    Graefes Arch Clin Exp Ophthalmol; 1993 Dec; 231(12):681-6. PubMed ID: 8299974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of geometric features as biomarkers of diabetic retinopathy for characterizing the retinal vascular changes during the progression of diabetes.
    Leontidis G; Al-Diri B; Wigdahl J; Hunter A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5255-9. PubMed ID: 26737477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.
    Abràmoff MD; Lou Y; Erginay A; Clarida W; Amelon R; Folk JC; Niemeijer M
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5200-5206. PubMed ID: 27701631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided diagnosis of proliferative diabetic retinopathy.
    Oloumi F; Rangayyan RM; Ells AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1438-41. PubMed ID: 23366171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and reliability of retinal photo grading for diabetic retinopathy: Remote graders from a developing country and standard retinal photo grader in Australia.
    Islam FMA
    PLoS One; 2017; 12(6):e0179310. PubMed ID: 28632764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.