BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29044623)

  • 21. Comparison of retention properties of stationary phases imitated cell membrane in RP HPLC.
    Bocian S; Buszewski B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():198-202. PubMed ID: 25899871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs.
    Kotecha J; Shah S; Rathod I; Subbaiah G
    Int J Pharm; 2007 Mar; 333(1-2):127-35. PubMed ID: 17095172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic chromatographic analysis of selenium species: application for the estimation of their pharmacokinetic properties.
    Tsopelas F; Tsantili-Kakoulidou A; Ochsenkühn-Petropoulou M
    Anal Bioanal Chem; 2010 Jul; 397(6):2171-80. PubMed ID: 20358187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns.
    Lázaro E; Ràfols C; Abraham MH; Rosés M
    J Med Chem; 2006 Aug; 49(16):4861-70. PubMed ID: 16884298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrostatic interactions and ionization effect in immobilized artificial membrane retention. A comparative study with octanol-water partitioning.
    Vrakas D; Giaginis C; Tsantili-Kakoulidou A
    J Chromatogr A; 2008 Apr; 1187(1-2):67-78. PubMed ID: 18291408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography.
    Lepont C; Poole CF
    J Chromatogr A; 2002 Feb; 946(1-2):107-24. PubMed ID: 11873960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Affinity of Antifungal Isoxazolo[3,4-
    Ciura K; Fedorowicz J; Žuvela P; Lovrić M; Kapica H; Baranowski P; Sawicki W; Wong MW; Sączewski J
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors.
    Yen TE; Agatonovic-Kustrin S; Evans AM; Nation RL; Ryand J
    J Pharm Biomed Anal; 2005 Jul; 38(3):472-8. PubMed ID: 15890485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthogonal chromatographic descriptors for modelling Caco-2 drug permeability.
    Deconinck E; Verstraete T; Van Gyseghem E; Vander Heyden Y; Coomans D
    J Chromatogr Sci; 2012 Mar; 50(3):175-83. PubMed ID: 22337793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilized artificial membrane liquid chromatography: proposed guidelines for technical optimization of retention measurements.
    Taillardat-Ertschinger A; Galland A; Carrupt PA; Testa B
    J Chromatogr A; 2002 Apr; 953(1-2):39-53. PubMed ID: 12058946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of the passive absorption through the rat intestine using chromatographic indices and molar volume.
    Genty M; González G; Clere C; Desangle-Gouty V; Legendre JY
    Eur J Pharm Sci; 2001 Jan; 12(3):223-9. PubMed ID: 11113641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different retention behavior of structurally diverse basic and neutral drugs in immobilized artificial membrane and reversed-phase high performance liquid chromatography: comparison with octanol-water partitioning.
    Vrakas D; Giaginis C; Tsantili-Kakoulidou A
    J Chromatogr A; 2006 May; 1116(1-2):158-64. PubMed ID: 16595136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning how to use IAM chromatography for predicting permeability.
    Ermondi G; Vallaro M; Caron G
    Eur J Pharm Sci; 2018 Mar; 114():385-390. PubMed ID: 29305983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of immobilized artificial membrane (IAM) and XTerra columns by means of chromatographic models.
    Lázaro E; Ràfols C; Rosés M
    J Chromatogr A; 2005 Jul; 1081(2):163-73. PubMed ID: 16038206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability.
    Ong S; Liu H; Pidgeon C
    J Chromatogr A; 1996 Mar; 728(1-2):113-28. PubMed ID: 8673230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilized artificial membrane chromatography: quantitative structure-retention relationships of structurally diverse drugs.
    Luco JM; Salinas AP; Torriero AA; Vázquez RN; Raba J; Marchevsky E
    J Chem Inf Comput Sci; 2003; 43(6):2129-36. PubMed ID: 14632465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of drug-membrane interactions by IAM-HPLC: effects of different phospholipid stationary phases on the partition of bases.
    Barbato F; di Martino G; Grumetto L; La Rotonda MI
    Eur J Pharm Sci; 2004 Jul; 22(4):261-9. PubMed ID: 15196582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data.
    Grumetto L; Carpentiero C; Barbato F
    Eur J Pharm Sci; 2012 Apr; 45(5):685-92. PubMed ID: 22306648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular lipophilicity determination of a huperzine series by HPLC: comparison of C18 and IAM stationary phases.
    Darrouzain F; Dallet P; Dubost JP; Ismaili L; Pehourcq F; Bannwarth B; Matoga M; Guillaume YC
    J Pharm Biomed Anal; 2006 Apr; 41(1):228-32. PubMed ID: 16406443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phospholipid-based Immobilized Artificial Membrane (IAM) Chromatography: A Powerful Tool to Model Drug Distribution Processes.
    Sobanska AW; Brzezinska E
    Curr Pharm Des; 2017; 23(44):6784-6794. PubMed ID: 29046146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.