BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29044752)

  • 1. Zn
    Jiji AC; Arshad A; Dhanya SR; Shabana PS; Mehjubin CK; Vijayan V
    Chemistry; 2017 Dec; 23(67):16976-16979. PubMed ID: 29044752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zn
    Li X; Du X; Ni J
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation.
    Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized and phosphorylated synthetic peptides corresponding to the second and third tubulin-binding repeats of the tau protein reveal structural features of paired helical filament assembly.
    Hoffmann R; Dawson NF; Wade JD; Otvös L
    J Pept Res; 1997 Aug; 50(2):132-42. PubMed ID: 9273897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of the Self-Aggregation of R3R4 Bi-repeat of Tau Protein.
    Jayan P; Vahid AA; Kizhakkeduth ST; Muhammed SOH; Shibina AB; Vijayan V
    Chembiochem; 2021 Jun; 22(12):2093-2097. PubMed ID: 33826208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein.
    Okuyama K; Nishiura C; Mizushima F; Minoura K; Sumida M; Taniguchi T; Tomoo K; Ishida T
    FEBS J; 2008 Apr; 275(7):1529-1539. PubMed ID: 18312411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marked difference between self-aggregations of first and fourth repeat peptides on tau microtubule-binding domain in acidic solution.
    Mizushima F; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2007 Jul; 142(1):49-54. PubMed ID: 17456500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidyl-prolyl isomerase activity of FK506 binding protein 12 prevents tau peptide from aggregating.
    Ikura T; Ito N
    Protein Eng Des Sel; 2013 Sep; 26(9):539-46. PubMed ID: 23832849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides.
    Jiji AC; Shine A; Vijayan V
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11562-6. PubMed ID: 27513615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of copper (II) ion to an Alzheimer's tau peptide as revealed by MALDI-TOF MS, CD, and NMR.
    Ma QF; Li YM; Du JT; Kanazawa K; Nemoto T; Nakanishi H; Zhao YF
    Biopolymers; 2005 Oct; 79(2):74-85. PubMed ID: 15986501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau fragment corresponding to the third repeat of microtubule-binding domain.
    Jiang LF; Yao TM; Zhu ZL; Wang C; Ji LN
    Biochim Biophys Acta; 2007 Nov; 1774(11):1414-21. PubMed ID: 17920001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Prion-Like Cross-Talk between a Key Alzheimer's Disease Tau-Fragment R3 and the Type 2 Diabetes Peptide IAPP.
    Arya S; Claud SL; Cantrell KL; Bowers MT
    ACS Chem Neurosci; 2019 Nov; 10(11):4757-4765. PubMed ID: 31642657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the interactions of iron and zinc with the microtubule binding repeats R1 and R4.
    Ahmadi S; Wu B; Song R; Zhu S; Simpson A; Wilson DJ; Kraatz HB
    J Inorg Biochem; 2020 Apr; 205():110987. PubMed ID: 31927402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats.
    Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q
    J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulations of the Tau R3-R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model.
    Nguyen PH; Derreumaux P
    J Phys Chem B; 2022 May; 126(18):3431-3438. PubMed ID: 35476504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular hairpin: a possible model for inhibition of tau aggregation by tannic acid.
    Yao J; Gao X; Sun W; Yao T; Shi S; Ji L
    Biochemistry; 2013 Mar; 52(11):1893-902. PubMed ID: 23442089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?
    Xu L; Zheng J; Margittai M; Nussinov R; Ma B
    ACS Chem Neurosci; 2016 May; 7(5):565-75. PubMed ID: 26854860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of G326 in Determining the Aggregation Propensity of R3 Tau Repeat: Insights from Studies on R1R3 Tau Construct.
    Sahayaraj AE; Abdul Vahid A; Dhara A; Babu AT; Vijayan V
    J Phys Chem B; 2024 May; 128(18):4325-4335. PubMed ID: 38676652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3.
    Ganguly P; Do TD; Larini L; LaPointe NE; Sercel AJ; Shade MF; Feinstein SC; Bowers MT; Shea JE
    J Phys Chem B; 2015 Apr; 119(13):4582-93. PubMed ID: 25775228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy.
    Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G
    Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.