These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29044888)

  • 1. Nuclear magnetic relaxation dispersion of murine tissue for development of T
    Araya YT; Martínez-Santiesteban F; Handler WB; Harris CT; Chronik BA; Scholl TJ
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 29044888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R
    Bödenler M; Basini M; Casula MF; Umut E; Gösweiner C; Petrovic A; Kruk D; Scharfetter H
    J Magn Reson; 2018 May; 290():68-75. PubMed ID: 29574318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of contrast agents with fast field-cycling magnetic resonance imaging.
    Hógáin DO; Davies GR; Baroni S; Aime S; Lurie DJ
    Phys Med Biol; 2011 Jan; 56(1):105-15. PubMed ID: 21119231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.
    Pine KJ; Goldie F; Lurie DJ
    Magn Reson Med; 2014 Nov; 72(5):1492-7. PubMed ID: 24272700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T
    Martínez-Santiesteban FM; Dang TP; Lim H; Chen AP; Scholl TJ
    NMR Biomed; 2017 Sep; 30(9):. PubMed ID: 28653507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of environmental magnetic fields for the acquisition of Nuclear magnetic relaxation dispersion profiles below Earth's field.
    Zampetoulas V; Lurie DJ; Broche LM
    J Magn Reson; 2017 Sep; 282():38-46. PubMed ID: 28759741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a fast field-cycling magnetic resonance imaging system, characterization and methods for relaxation dispersion measurements around 1.5 T.
    Chanet N; Guillot G; Willoquet G; Jourdain L; Dubuisson RM; Reganha G; de Rochefort L
    Rev Sci Instrum; 2020 Feb; 91(2):024102. PubMed ID: 32113406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo assessment of tumour associated macrophages in murine melanoma obtained by low-field relaxometry in the presence of iron oxide particles.
    Baroni S; Ruggiero MR; Bitonto V; Broche LM; Lurie DJ; Aime S; Geninatti Crich S
    Biomaterials; 2020 Apr; 236():119805. PubMed ID: 32028168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New applications and perspectives of fast field cycling NMR relaxometry.
    Steele RM; Korb JP; Ferrante G; Bubici S
    Magn Reson Chem; 2016 Jun; 54(6):502-9. PubMed ID: 25855084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-field-cycling NMR at very low magnetic fields: water molecular dynamic biomarkers of glioma cell invasion and migration.
    Petit M; Leclercq M; Pierre S; Ruggiero MR; El Atifi M; Boutonnat J; Fries PH; Berger F; Lahrech H
    NMR Biomed; 2022 Jun; 35(6):e4677. PubMed ID: 34961995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field dependence of T1 for hyperpolarized [1-13C]pyruvate.
    Chattergoon N; Martínez-Santiesteban F; Handler WB; Ardenkjaer-Larsen JH; Scholl TJ
    Contrast Media Mol Imaging; 2013; 8(1):57-62. PubMed ID: 23109393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the Spin-Lattice Relaxation Magnetic Field Dependence of Hyperpolarized [1-13C]pyruvate.
    Kim S; Martinez-Santiesteban F; Scholl TJ
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the tumour extracellular matrix by in vivo Fast Field Cycling relaxometry after the administration of a Gadolinium-based MRI contrast agent.
    Baroni S; Ruggiero MR; Aime S; Geninatti Crich S
    Magn Reson Chem; 2019 Aug; 57(10):845-851. PubMed ID: 30675933
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of r₁ and r₂ relaxivity of gadolinium-based contrast agents on the T₁-weighted MR signal at increasing magnetic field strengths.
    Hagberg GE; Scheffler K
    Contrast Media Mol Imaging; 2013; 8(6):456-65. PubMed ID: 24375901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents.
    Rinck PA; Muller RN
    Eur Radiol; 1999; 9(5):998-1004. PubMed ID: 10370005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T.
    Shen Y; Goerner FL; Snyder C; Morelli JN; Hao D; Hu D; Li X; Runge VM
    Invest Radiol; 2015 May; 50(5):330-8. PubMed ID: 25658049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-cycling relaxometry: medical applications.
    Rinck PA; Fischer HW; Vander Elst L; Van Haverbeke Y; Muller RN
    Radiology; 1988 Sep; 168(3):843-9. PubMed ID: 3406414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance imaging with T1 dispersion contrast.
    Ungersma SE; Matter NI; Hardy JW; Venook RD; Macovski A; Conolly SM; Scott GC
    Magn Reson Med; 2006 Jun; 55(6):1362-71. PubMed ID: 16673360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.