These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 29044944)
1. Rapid evolution of phenology during range expansion with recent climate change. Lustenhouwer N; Wilschut RA; Williams JL; van der Putten WH; Levine JM Glob Chang Biol; 2018 Feb; 24(2):e534-e544. PubMed ID: 29044944 [TBL] [Abstract][Full Text] [Related]
2. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming. Valdés A; Marteinsdóttir B; Ehrlén J Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704 [TBL] [Abstract][Full Text] [Related]
3. Local adaptation primes cold-edge populations for range expansion but not warming-induced range shifts. Hargreaves AL; Eckert CG Ecol Lett; 2019 Jan; 22(1):78-88. PubMed ID: 30411457 [TBL] [Abstract][Full Text] [Related]
4. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Gugger S; Kesselring H; Stöcklin J; Hamann E Ann Bot; 2015 Nov; 116(6):953-62. PubMed ID: 26424784 [TBL] [Abstract][Full Text] [Related]
5. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change. Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366 [TBL] [Abstract][Full Text] [Related]
6. Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds. Thomann M; Imbert E; Engstrand RC; Cheptou PO J Evol Biol; 2015 Apr; 28(4):766-78. PubMed ID: 25682981 [TBL] [Abstract][Full Text] [Related]
7. Phenology in a warming world: differences between native and non-native plant species. Zettlemoyer MA; Schultheis EH; Lau JA Ecol Lett; 2019 Aug; 22(8):1253-1263. PubMed ID: 31134712 [TBL] [Abstract][Full Text] [Related]
8. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology. Liancourt P; Spence LA; Boldgiv B; Lkhagva A; Helliker BR; Casper BB; Petraitis PS Ecology; 2012 Apr; 93(4):815-24. PubMed ID: 22690632 [TBL] [Abstract][Full Text] [Related]
9. Earlier phenology of a nonnative plant increases impacts on native competitors. Alexander JM; Levine JM Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6199-6204. PubMed ID: 30850526 [TBL] [Abstract][Full Text] [Related]
10. Population differentiation in a Mediterranean relict shrub: the potential role of local adaptation for coping with climate change. Lázaro-Nogal A; Matesanz S; Hallik L; Krasnova A; Traveset A; Valladares F Oecologia; 2016 Apr; 180(4):1075-90. PubMed ID: 26662734 [TBL] [Abstract][Full Text] [Related]
11. Evidence for rapid evolution of phenology in an invasive grass. Novy A; Flory SL; Hartman JM J Evol Biol; 2013 Feb; 26(2):443-50. PubMed ID: 23194053 [TBL] [Abstract][Full Text] [Related]
12. Stress avoidance in a common annual: reproductive timing is important for local adaptation and geographic distribution. Griffith TM; Watson MA J Evol Biol; 2005 Nov; 18(6):1601-12. PubMed ID: 16313471 [TBL] [Abstract][Full Text] [Related]
13. Population genetics and adaptation to climate along elevation gradients in invasive Solidago canadensis. Moran EV; Reid A; Levine JM PLoS One; 2017; 12(9):e0185539. PubMed ID: 28957402 [TBL] [Abstract][Full Text] [Related]
14. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Bjorkman AD; Vellend M; Frei ER; Henry GH Glob Chang Biol; 2017 Apr; 23(4):1540-1551. PubMed ID: 27391174 [TBL] [Abstract][Full Text] [Related]
15. Is evolution necessary for range expansion? Manipulating reproductive timing of a weedy annual transplanted beyond its range. Griffith TM; Watson MA Am Nat; 2006 Feb; 167(2):153-64. PubMed ID: 16670977 [TBL] [Abstract][Full Text] [Related]
16. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Anderson JT; Gezon ZJ Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363 [TBL] [Abstract][Full Text] [Related]
17. Reproducing under a warming climate: long winter flowering and extended flower longevity in the only Mediterranean and maritime Primula. Aronne G; Buonanno M; De Micco V Plant Biol (Stuttg); 2015 Mar; 17(2):535-44. PubMed ID: 25294217 [TBL] [Abstract][Full Text] [Related]
18. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Peterson ML; Doak DF; Morris WF Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464 [TBL] [Abstract][Full Text] [Related]
19. Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades. Van Dijk H; Hautekèete NC J Evol Biol; 2014 Aug; 27(8):1572-81. PubMed ID: 24835689 [TBL] [Abstract][Full Text] [Related]
20. Artificial Selection Reveals High Genetic Variation in Phenology at the Trailing Edge of a Species Range. Sheth SN; Angert AL Am Nat; 2016 Feb; 187(2):182-93. PubMed ID: 26807746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]