These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29044952)

  • 1. Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation.
    Cerqueira NMFSA; Fernandes PA; Ramos MJ
    Chemphyschem; 2018 Mar; 19(6):669-689. PubMed ID: 29044952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational enzymatic catalysis.
    Ramos MJ; Fernandes PA
    Acc Chem Res; 2008 Jun; 41(6):689-98. PubMed ID: 18465885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers.
    Sousa SF; Fernandes PA; Ramos MJ
    Phys Chem Chem Phys; 2012 Sep; 14(36):12431-41. PubMed ID: 22870506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    J Comput Chem; 2004 Dec; 25(16):2031-7. PubMed ID: 15481089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational enzymology: insight into biological catalysts from modelling.
    van der Kamp MW; Mulholland AJ
    Nat Prod Rep; 2008 Dec; 25(6):1001-14. PubMed ID: 19030602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the enigmatic mechanism of L-asparaginase II with QM/QM calculations.
    Gesto DS; Cerqueira NM; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2013 May; 135(19):7146-58. PubMed ID: 23544711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating Enzymatic Catalysis Using Fast Quantum Chemical Descriptors.
    Grillo IB; Urquiza-Carvalho GA; Bachega JFR; Rocha GB
    J Chem Inf Model; 2020 Feb; 60(2):578-591. PubMed ID: 31895567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical modeling of catalytic processes.
    Bell AT; Head-Gordon M
    Annu Rev Chem Biomol Eng; 2011; 2():453-77. PubMed ID: 22432627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling enzyme reaction mechanisms, specificity and catalysis.
    Mulholland AJ
    Drug Discov Today; 2005 Oct; 10(20):1393-402. PubMed ID: 16253878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes.
    Jensen KP; Bell CB; Clay MD; Solomon EI
    J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Biochemistry-Enzyme Mechanisms Explored.
    Culka M; Gisdon FJ; Ullmann GM
    Adv Protein Chem Struct Biol; 2017; 109():77-112. PubMed ID: 28683923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydration of ribonucleotides catalyzed by ribonucleotide reductase: the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    Biophys J; 2006 Mar; 90(6):2109-19. PubMed ID: 16361339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of ribonucleotide reductase mechanism-based inhibition by 2'-azido-2'-deoxyribonucleoside 5'-diphosphates.
    Pereira S; Fernandes PA; Ramos MJ
    J Comput Chem; 2004 Jan; 25(2):227-37. PubMed ID: 14648621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy.
    Lendzian F
    Biochim Biophys Acta; 2005 Feb; 1707(1):67-90. PubMed ID: 15721607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes.
    de Visser SP
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM methods for studying enzymatic reactions of glycosyltransferases.
    Tvaroška I
    Methods Mol Biol; 2015; 1273():489-99. PubMed ID: 25753727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.
    Hayashi S; Uchida Y; Hasegawa T; Higashi M; Kosugi T; Kamiya M
    Annu Rev Phys Chem; 2017 May; 68():135-154. PubMed ID: 28463655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.