These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29045329)

  • 1. Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects.
    Muhammad H; Fuchs TJ; De Cuir N; De Moraes CG; Blumberg DM; Liebmann JM; Ritch R; Hood DC
    J Glaucoma; 2017 Dec; 26(12):1086-1094. PubMed ID: 29045329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans.
    Alhadeff PA; De Moraes CG; Chen M; Raza AS; Ritch R; Hood DC
    J Glaucoma; 2017 May; 26(5):498-504. PubMed ID: 28333890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma.
    Banegas SA; Antón A; Morilla A; Bogado M; Ayala EM; Fernandez-Guardiola A; Moreno-Montañes J
    J Glaucoma; 2016 Mar; 25(3):e229-35. PubMed ID: 26020689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images.
    Asaoka R; Murata H; Hirasawa K; Fujino Y; Matsuura M; Miki A; Kanamoto T; Ikeda Y; Mori K; Iwase A; Shoji N; Inoue K; Yamagami J; Araie M
    Am J Ophthalmol; 2019 Feb; 198():136-145. PubMed ID: 30316669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography.
    Zhang X; Loewen N; Tan O; Greenfield DS; Schuman JS; Varma R; Huang D;
    Am J Ophthalmol; 2016 Mar; 163():29-37. PubMed ID: 26627918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal Nerve Fiber Layer Thickness Measurement Comparison Using Spectral Domain and Swept Source Optical Coherence Tomography.
    Ha A; Lee SH; Lee EJ; Kim TW
    Korean J Ophthalmol; 2016 Apr; 30(2):140-7. PubMed ID: 27051263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting glaucoma with visual fields derived from frequency-domain optical coherence tomography.
    Zhang X; Raza AS; Hood DC
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3289-96. PubMed ID: 23599332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage.
    Sihota R; Sony P; Gupta V; Dada T; Singh R
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2006-10. PubMed ID: 16639009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma.
    Wollstein G; Schuman JS; Price LL; Aydin A; Stark PC; Hertzmark E; Lai E; Ishikawa H; Mattox C; Fujimoto JG; Paunescu LA
    Arch Ophthalmol; 2005 Apr; 123(4):464-70. PubMed ID: 15824218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying early glaucoma with optical coherence tomography.
    Nouri-Mahdavi K; Hoffman D; Tannenbaum DP; Law SK; Caprioli J
    Am J Ophthalmol; 2004 Feb; 137(2):228-35. PubMed ID: 14962410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern.
    Hoesl LM; Tornow RP; Schrems WA; Horn FK; Mardin CY; Kruse FE; Juenemann AG; Laemmer R
    J Glaucoma; 2013; 22(4):317-24. PubMed ID: 22027931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic Ability of Wide-field Retinal Nerve Fiber Layer Maps Using Swept-Source Optical Coherence Tomography for Detection of Preperimetric and Early Perimetric Glaucoma.
    Lee WJ; Na KI; Kim YK; Jeoung JW; Park KH
    J Glaucoma; 2017 Jun; 26(6):577-585. PubMed ID: 28368998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Examination of the Frequency of Paravascular Defects and Epiretinal Membranes in Eyes With Early Glaucoma Using En-face Slab OCT Images.
    Mavrommatis MA; De Cuir N; Reynaud J; De Moraes CG; Xin D; Rajshekhar R; Liebmann JM; Ritch R; Fortune B; Hood DC
    J Glaucoma; 2019 Mar; 28(3):265-269. PubMed ID: 30817498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage.
    Kanamori A; Nagai-Kusuhara A; Escaño MF; Maeda H; Nakamura M; Negi A
    Graefes Arch Clin Exp Ophthalmol; 2006 Jan; 244(1):58-68. PubMed ID: 16044326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss.
    Grewal DS; Sehi M; Greenfield DS
    Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma?
    Lee WJ; Kim YK; Jeoung JW; Park KH
    Invest Ophthalmol Vis Sci; 2017 Dec; 58(14):6257-6264. PubMed ID: 29242899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography.
    Lopez-Peña MJ; Ferreras A; Larrosa JM; Polo V; Pablo LE
    J Glaucoma; 2011 Sep; 20(7):422-32. PubMed ID: 21278593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study.
    Leung CK; Chan WM; Yung WH; Ng AC; Woo J; Tsang MK; Tse RK
    Ophthalmology; 2005 Mar; 112(3):391-400. PubMed ID: 15745764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography.
    Cvenkel B; Sustar M; Perovšek D
    Doc Ophthalmol; 2017 Aug; 135(1):17-28. PubMed ID: 28567618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects.
    Chiseliţă D; Pantalon AD; Cantemir A; Gălăţanu C
    Rom J Ophthalmol; 2016; 60(3):158-164. PubMed ID: 29450341
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.