BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29045413)

  • 1. Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest.
    Korzeniewski B
    PLoS One; 2017; 12(10):e0185991. PubMed ID: 29045413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle.
    Korzeniewski B
    PLoS One; 2015; 10(2):e0117145. PubMed ID: 25647747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical background of the VO2 on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    J Physiol Sci; 2006 Feb; 56(1):1-12. PubMed ID: 16779908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle.
    Korzeniewski B
    PLoS One; 2018; 13(4):e0195620. PubMed ID: 29698403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.
    Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K
    Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of work:rest cycle duration on [Formula: see text] fluctuations during intermittent exercise.
    Combes A; Dekerle J; Bougault V; Daussin FN
    J Sports Sci; 2017 Jan; 35(1):7-13. PubMed ID: 26943697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breath isoprene excretion during rest and low-intensity cycling exercise is associated with skeletal muscle mass in healthy human subjects.
    Hori A; Suijo K; Kondo T; Hotta N
    J Breath Res; 2020 Dec; 15(1):016009. PubMed ID: 33027773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria.
    Affourtit C; Brand MD
    Biochem J; 2006 Jan; 393(Pt 1):151-9. PubMed ID: 16137248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.
    Korzeniewski B
    J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial coupling in humans: assessment of the P/O2 ratio at the onset of calf exercise.
    Cettolo V; Cautero M; Tam E; Francescato MP
    Eur J Appl Physiol; 2007 Apr; 99(6):593-604. PubMed ID: 17206437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low intensity exercise in humans accelerates mitochondrial ATP production and pulmonary oxygen kinetics during subsequent more intense exercise.
    Campbell-O'Sullivan SP; Constantin-Teodosiu D; Peirce N; Greenhaff PL
    J Physiol; 2002 Feb; 538(Pt 3):931-9. PubMed ID: 11826176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying extremely fast muscle V˙O
    Korzeniewski B; Rossiter HB; Zoladz JA
    Physiol Rep; 2018 Aug; 6(16):e13808. PubMed ID: 30156055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased mitochondrial proton leak in skeletal muscle mitochondria of UCP1-deficient mice.
    Monemdjou S; Hofmann WE; Kozak LP; Harper ME
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E941-6. PubMed ID: 11001779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The causes and functions of mitochondrial proton leak.
    Brand MD; Chien LF; Ainscow EK; Rolfe DF; Porter RK
    Biochim Biophys Acta; 1994 Aug; 1187(2):132-9. PubMed ID: 8075107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E852-61. PubMed ID: 14736705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function.
    Jiang N; Zhang G; Bo H; Qu J; Ma G; Cao D; Wen L; Liu S; Ji LL; Zhang Y
    Free Radic Biol Med; 2009 Jan; 46(2):138-45. PubMed ID: 18977294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.