These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29045439)

  • 1. 3D reconstruction of human movement in a single projection by dynamic marker scaling.
    Cohen EJ; Bravi R; Minciacchi D
    PLoS One; 2017; 12(10):e0186443. PubMed ID: 29045439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.
    Bernardina GRD; Monnet T; Cerveri P; Silvatti AP
    PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.
    Choi JH; Fahrig R; Keil A; Besier TF; Pal S; McWalter EJ; Beaupré GS; Maier A
    Med Phys; 2013 Sep; 40(9):091905. PubMed ID: 24007156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling.
    Chung H; Poulsen PR; Keall PJ; Cho S; Cho B
    Med Phys; 2016 Aug; 43(8):4643. PubMed ID: 27487881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.
    Silvatti AP; Cerveri P; Telles T; Dias FA; Baroni G; Barros RM
    Comput Methods Biomech Biomed Engin; 2013; 16(11):1240-8. PubMed ID: 22435960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human movement reconstruction from video shot by a single stationary camera.
    Yang F; Yuan X
    Ann Biomed Eng; 2005 May; 33(5):674-84. PubMed ID: 15981867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algorithm to correct for camera vibrations in optical motion tracking systems.
    Huber P; Cagran C; Müller W
    J Biomech; 2011 Jul; 44(11):2172-6. PubMed ID: 21640352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading.
    Göpfert B; Krol Z; Freslier M; Krieg AH
    Biomed Eng Online; 2011 Jul; 10():60. PubMed ID: 21762533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D limb movement tracking and analysis for neurological dysfunctions of neonates using multi-camera videos.
    Gu IY; Sowulewski G; Yixiao Yun ; Flisberg A; Thordstein M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2395-2398. PubMed ID: 28268807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.
    Feng Y; Max L
    J Speech Lang Hear Res; 2014 Apr; 57(2):426-38. PubMed ID: 24686484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    J Biomech; 2017 Jan; 51():77-82. PubMed ID: 27974154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to reconstruct intra-fractional liver motion in rotational radiotherapy using linear fiducial markers.
    Chi Y; Shen C; Li B; Zhang Y; Yang M; Folkert M; Jia X
    Phys Med Biol; 2019 Nov; 64(22):225013. PubMed ID: 31593930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    PLoS One; 2016; 11(8):e0160490. PubMed ID: 27513846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial reconstruction of human motion by means of a single camera and a biomechanical model.
    Ambrósio J; Abrantes J; Lopes G
    Hum Mov Sci; 2001 Dec; 20(6):829-51. PubMed ID: 11792442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic Analysis Using 3D Motion Capture of Drinking Task in People With and Without Upper-extremity Impairments.
    Alt Murphy M; Murphy S; Persson HC; Bergström UB; Sunnerhagen KS
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29658937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach.
    de Jesus K; de Jesus K; Figueiredo P; Vilas-Boas JP; Fernandes RJ; Machado LJ
    Comput Math Methods Med; 2015; 2015():269264. PubMed ID: 26175796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional videography using omnidirectional cameras: An approach inspired by the direct linear transformation method.
    Nagano A
    J Biomech; 2021 Nov; 128():110722. PubMed ID: 34509908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to minimise error in 2D-DLT reconstruction of non-planar markers filmed with a moving camera.
    Holden-Douilly L; Pourcelot P; Chateau H; Falala S; Crevier-Denoix N
    Comput Methods Biomech Biomed Engin; 2013; 16(9):929-36. PubMed ID: 22225468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anipose: A toolkit for robust markerless 3D pose estimation.
    Karashchuk P; Rupp KL; Dickinson ES; Walling-Bell S; Sanders E; Azim E; Brunton BW; Tuthill JC
    Cell Rep; 2021 Sep; 36(13):109730. PubMed ID: 34592148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A panning DLT procedure for three-dimensional videography.
    Yu B; Koh TJ; Hay JG
    J Biomech; 1993 Jun; 26(6):741-51. PubMed ID: 8514817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.