These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29045702)

  • 1. The Edaphic Environment Mediates Flowering-Time Differentiation Between Adjacent Populations of Leptosiphon Parviflorus.
    Dittmar EL; Schemske DW
    J Hered; 2017 Dec; 109(1):90-99. PubMed ID: 29045702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Variation in Selection Influences Microgeographic Local Adaptation.
    Dittmar EL; Schemske DW
    Am Nat; 2023 Oct; 202(4):471-485. PubMed ID: 37792918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations.
    Hall MC; Willis JH
    Evolution; 2006 Dec; 60(12):2466-77. PubMed ID: 17263109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata.
    Leinonen PH; Remington DL; Leppälä J; Savolainen O
    Mol Ecol; 2013 Feb; 22(3):709-23. PubMed ID: 22724431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.
    Dittmar EL; Oakley CG; Ågren J; Schemske DW
    Mol Ecol; 2014 Sep; 23(17):4291-303. PubMed ID: 25039363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations.
    Verhoeven KJ; Poorter H; Nevo E; Biere A
    Mol Ecol; 2008 Jul; 17(14):3416-24. PubMed ID: 18573164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators.
    Sianta SA; Kay KM
    Am J Bot; 2019 May; 106(5):690-703. PubMed ID: 31070790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats.
    Donohue K; Pyle EH; Messiqua D; Heschel MS; Schmitt J
    Evolution; 2001 Apr; 55(4):692-702. PubMed ID: 11392387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing Responses to Changing Seasons: Natural Variation in the Plasticity of Flowering Time.
    Blackman BK
    Plant Physiol; 2017 Jan; 173(1):16-26. PubMed ID: 27872243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life history trait differentiation and local adaptation in invasive populations of Ambrosia artemisiifolia in China.
    Li XM; She DY; Zhang DY; Liao WJ
    Oecologia; 2015 Mar; 177(3):669-677. PubMed ID: 25362583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering.
    Bouché F; Woods DP; Amasino RM
    Plant Physiol; 2017 Jan; 173(1):27-35. PubMed ID: 27756819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary radiation of "stone plants" in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time.
    Ellis AG; Weis AE; Gaut BS
    Evolution; 2006 Jan; 60(1):39-55. PubMed ID: 16568630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major QTL controls adaptation to serpentine soils in Mimulus guttatus.
    Selby JP; Willis JH
    Mol Ecol; 2018 Dec; 27(24):5073-5087. PubMed ID: 30388321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis.
    Donohue K; Messiqua D; Pyle EH; Heschel MS; Schmitt J
    Evolution; 2000 Dec; 54(6):1956-68. PubMed ID: 11209773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils.
    Meimberg H; Milan NF; Karatassiou M; Espeland EK; McKay JK; Rice KJ
    Mol Ecol; 2010 Dec; 19(23):5308-19. PubMed ID: 20977511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential adaptation to a harsh granite outcrop habitat between sympatric Mimulus species.
    Ferris KG; Willis JH
    Evolution; 2018 Jun; 72(6):1225-1241. PubMed ID: 29603731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils.
    Yost JM; Barry T; Kay KM; Rajakaruna N
    Am J Bot; 2012 May; 99(5):890-7. PubMed ID: 22539516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata.
    Wos G; Willi Y
    Ann Bot; 2018 Aug; 122(3):473-484. PubMed ID: 29846507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional ecology of ecotypic differentiation in the Californian serpentine sunflower (Helianthus exilis).
    Sambatti JBM; Rice KJ
    New Phytol; 2007; 175(1):107-119. PubMed ID: 17547671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.
    Oakley CG; Ågren J; Atchison RA; Schemske DW
    Mol Ecol; 2014 Sep; 23(17):4304-15. PubMed ID: 25039860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.