These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 29045787)

  • 1. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation.
    Grigolato F; Colombo C; Ferrari R; Rezabkova L; Arosio P
    ACS Nano; 2017 Nov; 11(11):11358-11367. PubMed ID: 29045787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of shear forces in primary and secondary nucleation of amyloid fibrils.
    Axell E; Hu J; Lindberg M; Dear AJ; Ortigosa-Pascual L; Andrzejewska EA; Šneiderienė G; Thacker D; Knowles TPJ; Sparr E; Linse S
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2322572121. PubMed ID: 38875148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of surfaces on amyloid formation.
    Grigolato F; Arosio P
    Biophys Chem; 2021 Mar; 270():106533. PubMed ID: 33529995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces.
    Chouchane K; Vendrely C; Amari M; Moreaux K; Bruckert F; Weidenhaupt M
    J Phys Chem B; 2015 Aug; 119(33):10543-53. PubMed ID: 26234630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-induced amyloid fibrillization: the role of inertia.
    McBride SA; Sanford SP; Lopez JM; Hirsa AH
    Soft Matter; 2016 Apr; 12(14):3461-7. PubMed ID: 26956731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils.
    Risør MW; Juhl DW; Bjerring M; Mathiesen J; Enghild JJ; Nielsen NC; Otzen DE
    Biophys J; 2017 Aug; 113(3):580-596. PubMed ID: 28793213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils.
    Thacker D; Sanagavarapu K; Frohm B; Meisl G; Knowles TPJ; Linse S
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25272-25283. PubMed ID: 33004626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.
    Chouchane K; Pignot-Paintrand I; Bruckert F; Weidenhaupt M
    J Photochem Photobiol B; 2018 Apr; 181():89-97. PubMed ID: 29524850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of unfolded Cu/Zn superoxide dismutase onto hydrophobic surfaces catalyzes its formation of amyloid fibrils.
    Khan MAI; Weininger U; Kjellström S; Deep S; Akke M
    Protein Eng Des Sel; 2019 Dec; 32(2):77-85. PubMed ID: 31832682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy.
    Loksztejn A; Dzwolak W
    J Mol Biol; 2010 Jan; 395(3):643-55. PubMed ID: 19891974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide Self-Assembly into Amyloid Fibrils at Hard and Soft Interfaces-From Corona Formation to Membrane Activity.
    John T; Martin LL; Abel B
    Macromol Biosci; 2023 Jun; 23(6):e2200576. PubMed ID: 36810963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insights Behind the Self-Assembly of Human Insulin under the Influence of Surface-Engineered Gold Nanoparticles.
    Flint Z; Grannemann H; Baffour K; Koti N; Taylor E; Grier E; Sutton C; Johnson D; Dandawate P; Patel R; Santra S; Banerjee T
    ACS Chem Neurosci; 2024 Jun; 15(11):2359-2371. PubMed ID: 38728258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface effects on aggregation kinetics of amyloidogenic peptides.
    Vácha R; Linse S; Lund M
    J Am Chem Soc; 2014 Aug; 136(33):11776-82. PubMed ID: 25068615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Do Gyrating Beads Accelerate Amyloid Fibrillization?
    Abdolvahabi A; Shi Y; Rasouli S; Croom CM; Chuprin A; Shaw BF
    Biophys J; 2017 Jan; 112(2):250-264. PubMed ID: 28122213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DnaK prevents human insulin amyloid fiber formation on hydrophobic surfaces.
    Ballet T; Brukert F; Mangiagalli P; Bureau C; Boulangé L; Nault L; Perret T; Weidenhaupt M
    Biochemistry; 2012 Mar; 51(11):2172-80. PubMed ID: 22352808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces.
    Sharp JS; Forrest JA; Jones RA
    Biochemistry; 2002 Dec; 41(52):15810-9. PubMed ID: 12501210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary nucleation and accessible surface in insulin amyloid fibril formation.
    Foderà V; Librizzi F; Groenning M; van de Weert M; Leone M
    J Phys Chem B; 2008 Mar; 112(12):3853-8. PubMed ID: 18311965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation and growth of insulin fibrils in bulk solution and at hydrophobic polystyrene surfaces.
    Smith MI; Sharp JS; Roberts CJ
    Biophys J; 2007 Sep; 93(6):2143-51. PubMed ID: 17496011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.