BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29045867)

  • 1. Enzyme-Triggered Dissociation of a FRET-Based Protein Biosensor Monitored by Synchrotron SAXS.
    Faccio G; Salentinig S
    Biophys J; 2017 Oct; 113(8):1731-1737. PubMed ID: 29045867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic tuning of FRET in a green fluorescent protein biosensor.
    Trigo-Mourino P; Thestrup T; Griesbeck O; Griesinger C; Becker S
    Sci Adv; 2019 Aug; 5(8):eaaw4988. PubMed ID: 31457088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A FRET-based biosensor for the detection of neutrophil elastase.
    Schulenburg C; Faccio G; Jankowska D; Maniura-Weber K; Richter M
    Analyst; 2016 Mar; 141(5):1645-8. PubMed ID: 26858995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of Genetically Encoded FRET-Based Biosensors to Detect GPCR Activity.
    Bordes L; Chavez-Abiega S; Goedhart J
    Methods Mol Biol; 2021; 2268():159-178. PubMed ID: 34085268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein.
    Gohil K; Wu SY; Takahashi-Yamashiro K; Shen Y; Campbell RE
    ACS Sens; 2023 Feb; 8(2):587-597. PubMed ID: 36693235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRET-based nanosensors for monitoring and quantification of alcohols in living cells.
    Soleja N; Manzoor O; Nandal P; Mohsin M
    Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Infrared Fluorescent Protein iRFP as an Acceptor for Förster Resonance Energy Transfer].
    Zlobovskaya OA; Sarkisyan KS; Lukyanov KA
    Bioorg Khim; 2015; 41(3):299-304. PubMed ID: 26502606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease.
    Kimura RH; Steenblock ER; Camarero JA
    Anal Biochem; 2007 Oct; 369(1):60-70. PubMed ID: 17586456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a NADPH-dependent blue fluorescent protein revealed the unique role of Gly176 on the fluorescence enhancement.
    Kao TH; Chen Y; Pai CH; Chang MC; Wang AH
    J Struct Biol; 2011 Jun; 174(3):485-93. PubMed ID: 21397029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.
    Komatsubara AT; Matsuda M; Aoki K
    Sci Rep; 2015 Aug; 5():13283. PubMed ID: 26290434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary optimization of fluorescent proteins for intracellular FRET.
    Nguyen AW; Daugherty PS
    Nat Biotechnol; 2005 Mar; 23(3):355-60. PubMed ID: 15696158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Analysis of a Genetically Encoded FRET Biosensor by SAXS and MD Simulations.
    Reinartz I; Sarter M; Otten J; Höfig H; Pohl M; Schug A; Stadler AM; Fitter J
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced dynamic range in a genetically encoded Ca2+ sensor.
    Liu S; He J; Jin H; Yang F; Lu J; Yang J
    Biochem Biophys Res Commun; 2011 Aug; 412(1):155-9. PubMed ID: 21806972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of a genetically encoded FRET biosensor by SAXS.
    Mertens HD; Piljić A; Schultz C; Svergun DI
    Biophys J; 2012 Jun; 102(12):2866-75. PubMed ID: 22735537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding.
    Sun C; Ouyang M; Cao Z; Ma S; Alqublan H; Sriranganathan N; Wang Y; Lu C
    Chem Commun (Camb); 2014 Oct; 50(78):11536-9. PubMed ID: 25133322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer.
    Raicu V; Jansma DB; Miller RJ; Friesen JD
    Biochem J; 2005 Jan; 385(Pt 1):265-77. PubMed ID: 15352875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer.
    Basak S; Sakia N; Dougherty L; Guo Z; Wu F; Mindlin F; Lary JW; Cole JL; Ding F; Bowen ME
    J Mol Biol; 2021 Mar; 433(5):166793. PubMed ID: 33388290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically encoded FRET probe for PKC activity based on pleckstrin.
    Schleifenbaum A; Stier G; Gasch A; Sattler M; Schultz C
    J Am Chem Soc; 2004 Sep; 126(38):11786-7. PubMed ID: 15382901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.