BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29045933)

  • 1. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity.
    Zhang W; Xiao B; Fang T
    Chemosphere; 2018 Jan; 191():324-334. PubMed ID: 29045933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental transformations of silver nanoparticles: impact on stability and toxicity.
    Levard C; Hotze EM; Lowry GV; Brown GE
    Environ Sci Technol; 2012 Jul; 46(13):6900-14. PubMed ID: 22339502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review.
    Zhang W; Ke S; Sun C; Xu X; Chen J; Yao L
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7390-7404. PubMed ID: 30673947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii.
    García-Alonso J; Rodriguez-Sanchez N; Misra SK; Valsami-Jones E; Croteau MN; Luoma SN; Rainbow PS
    Sci Total Environ; 2014 Apr; 476-477():688-95. PubMed ID: 24514586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polystyrene microplastics sunlight-induce oxidative dissolution, chemical transformation and toxicity enhancement of silver nanoparticles.
    Tong L; Duan P; Tian X; Huang J; Ji J; Chen Z; Yang J; Yu H; Zhang W
    Sci Total Environ; 2022 Jun; 827():154180. PubMed ID: 35231509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects.
    Pereira SPP; Jesus F; Aguiar S; de Oliveira R; Fernandes M; Ranville J; Nogueira AJA
    Sci Total Environ; 2018 Mar; 618():1389-1399. PubMed ID: 29096951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ chemical transformations of silver nanoparticles along the water-sediment continuum.
    Khaksar M; Jolley DF; Sekine R; Vasilev K; Johannessen B; Donner E; Lombi E
    Environ Sci Technol; 2015 Jan; 49(1):318-25. PubMed ID: 25405257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride-induced shape transformation of silver nanoparticles in a water environment.
    Zhang L; Li X; He R; Wu L; Zhang L; Zeng J
    Environ Pollut; 2015 Sep; 204():145-51. PubMed ID: 25965964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum).
    Sendra M; Yeste MP; Gatica JM; Moreno-Garrido I; Blasco J
    Chemosphere; 2017 Jul; 179():279-289. PubMed ID: 28371711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of silver and gold nanoparticles on marine microalgae.
    Moreno-Garrido I; Pérez S; Blasco J
    Mar Environ Res; 2015 Oct; 111():60-73. PubMed ID: 26002248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.
    Grün AY; Meier J; Metreveli G; Schaumann GE; Manz W
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24277-24288. PubMed ID: 27650851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.
    Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L
    Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.
    Yang X; Gondikas AP; Marinakos SM; Auffan M; Liu J; Hsu-Kim H; Meyer JN
    Environ Sci Technol; 2012 Jan; 46(2):1119-27. PubMed ID: 22148238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Ag and Ag
    Liu S; Wang C; Hou J; Wang P; Miao L; Fan X; You G; Xu Y
    Water Res; 2018 Jun; 137():28-36. PubMed ID: 29525425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical transformations of nanosilver in biological environments.
    Liu J; Wang Z; Liu FD; Kane AB; Hurt RH
    ACS Nano; 2012 Nov; 6(11):9887-99. PubMed ID: 23046098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita.
    Taju G; Abdul Majeed S; Nambi KS; Sahul Hameed AS
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 Apr; 161():41-52. PubMed ID: 24524868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.