BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29046294)

  • 21. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of the sarcoplasmic reticulum Ca2+ release induced by P2X receptor activation in mesenteric artery myocytes.
    Sukhanova KY; Thugorka OM; Bouryi VA; Harhun MI; Gordienko DV
    Pharmacol Rep; 2014 Jun; 66(3):363-72. PubMed ID: 24905510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle.
    Fukuta H; Kito Y; Suzuki H
    J Physiol; 2002 Apr; 540(Pt 1):249-60. PubMed ID: 11927684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria.
    Straub SV; Giovannucci DR; Yule DI
    J Gen Physiol; 2000 Oct; 116(4):547-60. PubMed ID: 11004204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methyl-beta-cyclodextrin prevents Ca2+-induced Ca2+ release in smooth muscle cells of mouse urinary bladder.
    Hotta S; Yamamura H; Ohya S; Imaizumi Y
    J Pharmacol Sci; 2007 Jan; 103(1):121-6. PubMed ID: 17202744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of mitochondria in the generation of spontaneous activity in detrusor smooth muscles of the Guinea pig bladder.
    Kubota Y; Hashitani H; Fukuta H; Kubota H; Kohri K; Suzuki H
    J Urol; 2003 Aug; 170(2 Pt 1):628-33. PubMed ID: 12853845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of InsP3 and ryanodine receptors in the activation of capacitative Ca2+ entry by store depletion or hypoxia in canine pulmonary arterial smooth muscle cells.
    Ng LC; Wilson SM; McAllister CE; Hume JR
    Br J Pharmacol; 2007 Sep; 152(1):101-11. PubMed ID: 17592501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure.
    Fukumoto GH; Lamp ST; Motter C; Bridge JH; Garfinkel A; Goldhaber JI
    Circ Res; 2005 Mar; 96(5):551-7. PubMed ID: 15718501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum.
    Michailova A; DelPrincipe F; Egger M; Niggli E
    Biophys J; 2002 Dec; 83(6):3134-51. PubMed ID: 12496084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved skeletal muscle Ca
    Eshima H; Miura S; Senoo N; Hatakeyama K; Poole DC; Kano Y
    Am J Physiol Regul Integr Comp Physiol; 2017 Jun; 312(6):R1017-R1028. PubMed ID: 28438761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca2+ entry following P2X receptor activation induces IP3 receptor-mediated Ca2+ release in myocytes from small renal arteries.
    Povstyan OV; Harhun MI; Gordienko DV
    Br J Pharmacol; 2011 Apr; 162(7):1618-38. PubMed ID: 21175582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Caffeine-inducible ATP release is mediated by Ca2+-signal transducing system from the endoplasmic reticulum to mitochondria.
    Katsuragi T; Sato C; Usune S; Ueno S; Segawa M; Migita K
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jul; 378(1):93-101. PubMed ID: 18446524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle.
    García-Pérez C; Hajnóczky G; Csordás G
    J Biol Chem; 2008 Nov; 283(47):32771-80. PubMed ID: 18790739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder.
    Moore ED; Voigt T; Kobayashi YM; Isenberg G; Fay FS; Gallitelli MF; Franzini-Armstrong C
    Biophys J; 2004 Sep; 87(3):1836-47. PubMed ID: 15345562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A significant fraction of calcium transients in intact guinea pig ventricular myocytes is mediated by Na(+)-Ca2+ exchange.
    Santi CM; Conner JA; Hernández-Cruz A
    Cell Signal; 1995 Nov; 7(8):803-20. PubMed ID: 8593249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling.
    Yi J; Ma C; Li Y; Weisleder N; Ríos E; Ma J; Zhou J
    J Biol Chem; 2011 Sep; 286(37):32436-43. PubMed ID: 21795684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the Ca(2+)-ATPase inhibitor, cyclopiazonic acid, on electromechanical coupling in the guinea-pig ureter.
    Maggi CA; Giuliani S; Santicioli P
    Br J Pharmacol; 1995 Jan; 114(1):127-37. PubMed ID: 7536095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells.
    Liu QH; Zheng YM; Wang YX
    Pflugers Arch; 2007 Jan; 453(4):531-41. PubMed ID: 17093969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stretch-induced calcium release in smooth muscle.
    Ji G; Barsotti RJ; Feldman ME; Kotlikoff MI
    J Gen Physiol; 2002 Jun; 119(6):533-44. PubMed ID: 12034761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.