These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29046297)

  • 1. Renal and colonic potassium transporters in the pregnant rat.
    West CA; Welling PA; West DA; Coleman RA; Cheng KY; Chen C; DuBose TD; Verlander JW; Baylis C; Gumz ML
    Am J Physiol Renal Physiol; 2018 Feb; 314(2):F251-F259. PubMed ID: 29046297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High baseline ROMK activity in the mouse late distal convoluted and early connecting tubule probably contributes to aldosterone-independent K
    Nesterov V; Bertog M; Korbmacher C
    Am J Physiol Renal Physiol; 2022 Jan; 322(1):F42-F54. PubMed ID: 34843658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.
    Weinstein AM
    Am J Physiol Renal Physiol; 2022 Feb; 322(2):F225-F244. PubMed ID: 35001663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NH4+ secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+-K+-ATPase.
    Nakamura S; Amlal H; Galla JH; Soleimani M
    Kidney Int; 1999 Dec; 56(6):2160-7. PubMed ID: 10594791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of MAPK stimulates the Ca2+ -dependent big-conductance K channels in cortical collecting duct.
    Li D; Wang Z; Sun P; Jin Y; Lin DH; Hebert SC; Giebisch G; Wang WH
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19569-74. PubMed ID: 17151195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ENaC and ROMK activity are inhibited in the DCT2/CNT of TgWnk4
    Zhang C; Wang L; Su XT; Zhang J; Lin DH; Wang WH
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F682-F688. PubMed ID: 28365586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Activation of renal outer medullary potassium channel in the renal distal convoluted tubule by high potassium diet].
    Li X; Li PH; Xiao Y; Zhao K; Zhao HY; Lu CZ; Qi XJ; Gu RM
    Sheng Li Xue Bao; 2023 Apr; 75(2):188-196. PubMed ID: 37089093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive remodeling of renal Na+ and K+ transport during pregnancy.
    de Souza AMA; West CA
    Curr Opin Nephrol Hypertens; 2018 Sep; 27(5):379-383. PubMed ID: 29957655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colonic H+-K+-ATPase is induced and mediates increased HCO3- reabsorption in inner medullary collecting duct in potassium depletion.
    Nakamura S; Amlal H; Galla JH; Soleimani M
    Kidney Int; 1998 Oct; 54(4):1233-9. PubMed ID: 9767539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet.
    Bailey MA; Cantone A; Yan Q; MacGregor GG; Leng Q; Amorim JB; Wang T; Hebert SC; Giebisch G; Malnic G
    Kidney Int; 2006 Jul; 70(1):51-9. PubMed ID: 16710355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments.
    Lee WS; Hebert SC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1124-31. PubMed ID: 7611453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation.
    Wei Y; Liao Y; Zavilowitz B; Ren J; Liu W; Chan P; Rohatgi R; Estilo G; Jackson EK; Wang WH; Satlin LM
    Am J Physiol Renal Physiol; 2014 Oct; 307(7):F833-43. PubMed ID: 25100281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K
    Wu P; Gao ZX; Su XT; Ellison DH; Hadchouel J; Teulon J; Wang WH
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F223-F230. PubMed ID: 29667910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.
    Frindt G; Shah A; Edvinsson J; Palmer LG
    Am J Physiol Renal Physiol; 2009 Feb; 296(2):F347-54. PubMed ID: 19036846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.
    Babilonia E; Li D; Wang Z; Sun P; Lin DH; Jin Y; Wang WH
    J Am Soc Nephrol; 2006 Oct; 17(10):2687-96. PubMed ID: 16971657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chloride-bicarbonate exchanger pendrin is increased in the kidney of the pregnant rat.
    West CA; Verlander JW; Wall SM; Baylis C
    Exp Physiol; 2015 Oct; 100(10):1177-86. PubMed ID: 26260990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the K+ channel Kir7.1 in the developing rat kidney: role in K+ excretion.
    Suzuki Y; Yasuoka Y; Shimohama T; Nishikitani M; Nakamura N; Hirose S; Kawahara K
    Kidney Int; 2003 Mar; 63(3):969-75. PubMed ID: 12631077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct.
    Ookata K; Tojo A; Suzuki Y; Nakamura N; Kimura K; Wilcox CS; Hirose S
    J Am Soc Nephrol; 2000 Nov; 11(11):1987-1994. PubMed ID: 11053473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental expression of ROMK in rat kidney.
    Zolotnitskaya A; Satlin LM
    Am J Physiol; 1999 Jun; 276(6):F825-36. PubMed ID: 10362771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of ROMK channels in the rat kidney.
    Mennitt PA; Wade JB; Ecelbarger CA; Palmer LG; Frindt G
    J Am Soc Nephrol; 1997 Dec; 8(12):1823-30. PubMed ID: 9402083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.