BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29046532)

  • 1. Cradles and museums of Antarctic teleost biodiversity.
    Dornburg A; Federman S; Lamb AD; Jones CD; Near TJ
    Nat Ecol Evol; 2017 Sep; 1(9):1379-1384. PubMed ID: 29046532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes.
    Near TJ; Dornburg A; Kuhn KL; Eastman JT; Pennington JN; Patarnello T; Zane L; Fernández DA; Jones CD
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3434-9. PubMed ID: 22331888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen.
    Dornburg A; Federman S; Eytan RI; Near TJ
    Mol Phylogenet Evol; 2016 Nov; 104():32-43. PubMed ID: 27421566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution in an extreme environment: developmental biases and phenotypic integration in the adaptive radiation of antarctic notothenioids.
    Hu Y; Ghigliotti L; Vacchi M; Pisano E; Detrich HW; Albertson RC
    BMC Evol Biol; 2016 Jun; 16(1):142. PubMed ID: 27356756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations.
    Near TJ; MacGuigan DJ; Parker E; Struthers CD; Jones CD; Dornburg A
    Mol Phylogenet Evol; 2018 Dec; 129():268-279. PubMed ID: 30195039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Historical contingency shapes adaptive radiation in Antarctic fishes.
    Daane JM; Dornburg A; Smits P; MacGuigan DJ; Brent Hawkins M; Near TJ; William Detrich Iii H; Harris MP
    Nat Ecol Evol; 2019 Jul; 3(7):1102-1109. PubMed ID: 31182814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular ecophysiology of Antarctic notothenioid fishes.
    Cheng CH; Detrich HW
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2215-32. PubMed ID: 17553777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?--Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity.
    Janko K; Lecointre G; Devries A; Couloux A; Cruaud C; Marshall C
    BMC Evol Biol; 2007 Nov; 7():220. PubMed ID: 17997847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling spatiotemporal trends in range shifts of marine commercial fish species driven by climate change surrounding the Antarctic Peninsula.
    Zhu Y; Zheng S; Reygondeau G; Zhang Z; Chu J; Hong X; Wang Y; Cheung WWL
    Sci Total Environ; 2020 Oct; 737():140258. PubMed ID: 32783853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution.
    di Prisco G; Eastman JT; Giordano D; Parisi E; Verde C
    Gene; 2007 Aug; 398(1-2):143-55. PubMed ID: 17553637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Antarctic notothenioids: Past phylogenetic history and contemporary phylogeographic implications in the face of environmental changes.
    Papetti C; Windisch HS; La Mesa M; Lucassen M; Marshall C; Lamare MD
    Mar Genomics; 2016 Feb; 25():1-9. PubMed ID: 26610933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes.
    Chen L; Lu Y; Li W; Ren Y; Yu M; Jiang S; Fu Y; Wang J; Peng S; Bilyk KT; Murphy KR; Zhuang X; Hune M; Zhai W; Wang W; Xu Q; Cheng CC
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30715292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change and trophic response of the Antarctic bottom fauna.
    Aronson RB; Moody RM; Ivany LC; Blake DB; Werner JE; Glass A
    PLoS One; 2009; 4(2):e4385. PubMed ID: 19194490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of thermal adaptation in polar fish.
    Verde C; Parisi E; di Prisco G
    Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation.
    Near TJ; Dornburg A; Harrington RC; Oliveira C; Pietsch TW; Thacker CE; Satoh TP; Katayama E; Wainwright PC; Eastman JT; Beaulieu JM
    BMC Evol Biol; 2015 Jun; 15():109. PubMed ID: 26062690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography.
    Bargelloni L; Marcato S; Zane L; Patarnello T
    Syst Biol; 2000 Mar; 49(1):114-29. PubMed ID: 12116475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fifty million years of beetle evolution along the Antarctic Polar Front.
    Baird HP; Shin S; Oberprieler RG; Hullé M; Vernon P; Moon KL; Adams RH; McKenna DD; Chown SL
    Proc Natl Acad Sci U S A; 2021 Jun; 118(24):. PubMed ID: 34108239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation.
    Rutschmann S; Matschiner M; Damerau M; Muschick M; Lehmann MF; Hanel R; Salzburger W
    Mol Ecol; 2011 Nov; 20(22):4707-21. PubMed ID: 21951675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective.
    Daane JM; Detrich HW
    Annu Rev Anim Biosci; 2022 Feb; 10():39-62. PubMed ID: 34748709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.