BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29046532)

  • 21. New insights into evolution of IgT genes coming from Antarctic teleosts.
    Giacomelli S; Buonocore F; Albanese F; Scapigliati G; Gerdol M; Oreste U; Coscia MR
    Mar Genomics; 2015 Dec; 24 Pt 1():55-68. PubMed ID: 26122835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity in a Cold Hot-Spot: DNA-Barcoding Reveals Patterns of Evolution among Antarctic Demosponges (Class Demospongiae, Phylum Porifera).
    Vargas S; Kelly M; Schnabel K; Mills S; Bowden D; Wörheide G
    PLoS One; 2015; 10(6):e0127573. PubMed ID: 26091103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA.
    Near TJ; Pesavento JJ; Cheng CH
    Mol Phylogenet Evol; 2004 Sep; 32(3):881-91. PubMed ID: 15288063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti.
    Ahn DH; Shin SC; Kim BM; Kang S; Kim JH; Ahn I; Park J; Park H
    Gigascience; 2017 Aug; 6(8):1-6. PubMed ID: 28873966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biodiversity of the deep Southern Ocean benthos.
    Brandt A; De Broyer C; De Mesel I; Ellingsen KE; Gooday AJ; Hilbig B; Linse K; Thomson MR; Tyler PA
    Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):39-66. PubMed ID: 17405207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.
    Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L
    Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity and distribution patterns in high southern latitude sponges.
    Downey RV; Griffiths HJ; Linse K; Janussen D
    PLoS One; 2012; 7(7):e41672. PubMed ID: 22911840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction in muscle fibre number during the adaptive radiation of notothenioid fishes: a phylogenetic perspective.
    Johnston IA; Fernández DA; Calvo J; Vieira VL; North AW; Abercromby M; Garland T
    J Exp Biol; 2003 Aug; 206(Pt 15):2595-609. PubMed ID: 12819266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unravelling the evolutionary history and future prospects of endemic species restricted to former glacial refugia.
    Razgour O; Salicini I; Ibáñez C; Randi E; Juste J
    Mol Ecol; 2015 Oct; 24(20):5267-83. PubMed ID: 26346923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences.
    Near TJ; Cheng CH
    Mol Phylogenet Evol; 2008 May; 47(2):832-40. PubMed ID: 18249562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula.
    Cowart DA; Murphy KR; Cheng CC
    Mar Genomics; 2018 Feb; 37():148-160. PubMed ID: 29223543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution and biodiversity of Antarctic organisms: a molecular perspective.
    Rogers AD
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2191-214. PubMed ID: 17553774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for past and present hybridization in three Antarctic icefish species provides new perspectives on an evolutionary radiation.
    Marino IA; Benazzo A; Agostini C; Mezzavilla M; Hoban SM; Patarnello T; Zane L; Bertorelle G
    Mol Ecol; 2013 Oct; 22(20):5148-61. PubMed ID: 23962255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly diverse, poorly studied and uniquely threatened by climate change: an assessment of marine biodiversity on South Georgia's continental shelf.
    Hogg OT; Barnes DK; Griffiths HJ
    PLoS One; 2011; 6(5):e19795. PubMed ID: 21647236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the effectiveness of specially protected areas for conservation of Antarctica's botanical diversity.
    Hughes KA; Ireland LC; Convey P; Fleming AH
    Conserv Biol; 2016 Feb; 30(1):113-20. PubMed ID: 26205208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study.
    Patarnello T; Verde C; di Prisco G; Bargelloni L; Zane L
    Bioessays; 2011 Apr; 33(4):260-8. PubMed ID: 21290397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Warming by 1°C Drives Species and Assemblage Level Responses in Antarctica's Marine Shallows.
    Ashton GV; Morley SA; Barnes DKA; Clark MS; Peck LS
    Curr Biol; 2017 Sep; 27(17):2698-2705.e3. PubMed ID: 28867203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide SNP data reveal improved evidence for Antarctic glacial refugia and dispersal of terrestrial invertebrates.
    McGaughran A; Terauds A; Convey P; Fraser CI
    Mol Ecol; 2019 Nov; 28(22):4941-4957. PubMed ID: 31596994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region.
    McDonough MM; Šumbera R; Mazoch V; Ferguson AW; Phillips CD; Bryja J
    Mol Ecol; 2015 Oct; 24(20):5248-66. PubMed ID: 26340076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.