These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 29046619)
1. EIGENVECTOR-BASED CENTRALITY MEASURES FOR TEMPORAL NETWORKS Taylor D; Myers SA; Clauset A; Porter MA; Mucha PJ Multiscale Model Simul; 2017; 15(1):537-574. PubMed ID: 29046619 [TBL] [Abstract][Full Text] [Related]
2. Fast computation of matrix function-based centrality measures for layer-coupled multiplex networks. Bergermann K; Stoll M Phys Rev E; 2022 Mar; 105(3-1):034305. PubMed ID: 35428049 [TBL] [Abstract][Full Text] [Related]
3. A generalized eigenvector centrality for multilayer networks with inter-layer constraints on adjacent node importance. Frost HR Appl Netw Sci; 2024; 9(1):14. PubMed ID: 38699246 [TBL] [Abstract][Full Text] [Related]
4. Towards a methodology for validation of centrality measures in complex networks. Batool K; Niazi MA PLoS One; 2014; 9(4):e90283. PubMed ID: 24709999 [TBL] [Abstract][Full Text] [Related]
5. Effect of Inter-layer Coupling on Multilayer Network Centrality Measures. Kumar T; Narayanan M; Ravindran B J Indian Inst Sci; 2019 Jun; 99(2):237-246. PubMed ID: 34282354 [TBL] [Abstract][Full Text] [Related]
6. A tensor-based framework for studying eigenvector multicentrality in multilayer networks. Wu M; He S; Zhang Y; Chen J; Sun Y; Liu YY; Zhang J; Poor HV Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15407-15413. PubMed ID: 31315978 [TBL] [Abstract][Full Text] [Related]
7. A new measure of centrality for brain networks. Joyce KE; Laurienti PJ; Burdette JH; Hayasaka S PLoS One; 2010 Aug; 5(8):e12200. PubMed ID: 20808943 [TBL] [Abstract][Full Text] [Related]
8. Eigenvector centrality of nodes in multiplex networks. Solá L; Romance M; Criado R; Flores J; García del Amo A; Boccaletti S Chaos; 2013 Sep; 23(3):033131. PubMed ID: 24089967 [TBL] [Abstract][Full Text] [Related]
9. The consistency of individual centrality across time and networks in wild vervet monkeys. Canteloup C; Puga-Gonzalez I; Sueur C; van de Waal E Am J Primatol; 2021 Feb; 83(2):e23232. PubMed ID: 33464611 [TBL] [Abstract][Full Text] [Related]
10. Subgraph centrality in complex networks. Estrada E; Rodríguez-Velázquez JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056103. PubMed ID: 16089598 [TBL] [Abstract][Full Text] [Related]
11. Localization and centrality in networks. Martin T; Zhang X; Newman ME Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052808. PubMed ID: 25493835 [TBL] [Abstract][Full Text] [Related]
12. Range-limited centrality measures in complex networks. Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158 [TBL] [Abstract][Full Text] [Related]
13. Adjustable reach in a network centrality based on current flows. Gurfinkel AJ; Rikvold PA Phys Rev E; 2021 May; 103(5-1):052308. PubMed ID: 34134335 [TBL] [Abstract][Full Text] [Related]
14. Localization of eigenvector centrality in networks with a cut vertex. Sharkey KJ Phys Rev E; 2019 Jan; 99(1-1):012315. PubMed ID: 30780242 [TBL] [Abstract][Full Text] [Related]
15. A dandelion structure of eigenvector preferential attachment networks. Adami V; Ebadi Z; Nattagh-Najafi M Sci Rep; 2024 Jul; 14(1):16994. PubMed ID: 39043773 [TBL] [Abstract][Full Text] [Related]
16. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. Lohmann G; Margulies DS; Horstmann A; Pleger B; Lepsien J; Goldhahn D; Schloegl H; Stumvoll M; Villringer A; Turner R PLoS One; 2010 Apr; 5(4):e10232. PubMed ID: 20436911 [TBL] [Abstract][Full Text] [Related]
17. Centralities in simplicial complexes. Applications to protein interaction networks. Estrada E; Ross GJ J Theor Biol; 2018 Feb; 438():46-60. PubMed ID: 29128505 [TBL] [Abstract][Full Text] [Related]
18. Spectral centrality measures in complex networks. Perra N; Fortunato S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036107. PubMed ID: 18851105 [TBL] [Abstract][Full Text] [Related]
19. Top influencers can be identified universally by combining classical centralities. Bucur D Sci Rep; 2020 Nov; 10(1):20550. PubMed ID: 33239723 [TBL] [Abstract][Full Text] [Related]
20. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks. Qiao T; Shan W; Yu G; Liu C Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]