These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29046631)

  • 1. Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study.
    Ursino M; Crisafulli A; di Pellegrino G; Magosso E; Cuppini C
    Front Comput Neurosci; 2017; 11():89. PubMed ID: 29046631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensory Bayesian Inference Depends on Synapse Maturation during Training: Theoretical Analysis and Neural Modeling Implementation.
    Ursino M; Cuppini C; Magosso E
    Neural Comput; 2017 Mar; 29(3):735-782. PubMed ID: 28095201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explaining the Effect of Likelihood Manipulation and Prior Through a Neural Network of the Audiovisual Perception of Space.
    Ursino M; Cuppini C; Magosso E; Beierholm U; Shams L
    Multisens Res; 2019 Jan; 32(2):111-144. PubMed ID: 31059469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network model of ventriloquism effect and aftereffect.
    Magosso E; Cuppini C; Ursino M
    PLoS One; 2012; 7(8):e42503. PubMed ID: 22880007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation and integration of multiple sensory inputs in primate superior colliculus.
    Wallace MT; Wilkinson LK; Stein BE
    J Neurophysiol; 1996 Aug; 76(2):1246-66. PubMed ID: 8871234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biologically inspired neurocomputational model for audiovisual integration and causal inference.
    Cuppini C; Shams L; Magosso E; Ursino M
    Eur J Neurosci; 2017 Nov; 46(9):2481-2498. PubMed ID: 28949035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neurocomputational analysis of the sound-induced flash illusion.
    Cuppini C; Magosso E; Bolognini N; Vallar G; Ursino M
    Neuroimage; 2014 May; 92():248-66. PubMed ID: 24518261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study of multisensory integration in the superior colliculus by a neural network model.
    Magosso E; Cuppini C; Serino A; Di Pellegrino G; Ursino M
    Neural Netw; 2008 Aug; 21(6):817-29. PubMed ID: 18657393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration.
    Oess T; Löhr MPR; Schmid D; Ernst MO; Neumann H
    Front Neurorobot; 2020; 14():29. PubMed ID: 32499692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ventriloquist in periphery: impact of eccentricity-related reliability on audio-visual localization.
    Charbonneau G; Véronneau M; Boudrias-Fournier C; Lepore F; Collignon O
    J Vis; 2013 Oct; 13(12):20. PubMed ID: 24167163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial receptive field shift by preceding cross-modal stimulation in the cat superior colliculus.
    Xu J; Bi T; Wu J; Meng F; Wang K; Hu J; Han X; Zhang J; Zhou X; Keniston L; Yu L
    J Physiol; 2018 Oct; 596(20):5033-5050. PubMed ID: 30144059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus.
    Kadunce DC; Vaughan JW; Wallace MT; Stein BE
    Exp Brain Res; 2001 Aug; 139(3):303-10. PubMed ID: 11545469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurocomputational approaches to modelling multisensory integration in the brain: a review.
    Ursino M; Cuppini C; Magosso E
    Neural Netw; 2014 Dec; 60():141-65. PubMed ID: 25218929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ventriloquism and audio-visual integration of voice and face].
    Yokosawa K; Kanaya S
    Brain Nerve; 2012 Jul; 64(7):771-7. PubMed ID: 22764349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback Modulates Audio-Visual Spatial Recalibration.
    Kramer A; Röder B; Bruns P
    Front Integr Neurosci; 2019; 13():74. PubMed ID: 32009913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration.
    Roach NW; Heron J; McGraw PV
    Proc Biol Sci; 2006 Sep; 273(1598):2159-68. PubMed ID: 16901835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.
    Magosso E; Bertini C; Cuppini C; Ursino M
    Neuropsychologia; 2016 Oct; 91():120-140. PubMed ID: 27424274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.
    Meijer GT; Montijn JS; Pennartz CMA; Lansink CS
    J Neurosci; 2017 Sep; 37(36):8783-8796. PubMed ID: 28821672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ventriloquist Illusion as a Tool to Study Multisensory Processing: An Update.
    Bruns P
    Front Integr Neurosci; 2019; 13():51. PubMed ID: 31572136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spatial congruity on audio-visual multimodal integration.
    Teder-Sälejärvi WA; Di Russo F; McDonald JJ; Hillyard SA
    J Cogn Neurosci; 2005 Sep; 17(9):1396-409. PubMed ID: 16197693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.