These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29046721)

  • 21. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.
    Ma K; Hu G; Pan L; Wang Z; Zhou Y; Wang Y; Ruan Z; He M
    Bioresour Technol; 2016 Nov; 219():114-122. PubMed ID: 27479802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture.
    Chiang CJ; Lee HM; Guo HJ; Wang ZW; Lin LJ; Chao YP
    J Agric Food Chem; 2013 Aug; 61(31):7583-90. PubMed ID: 23848609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans.
    Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J
    Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity.
    Yang X; Lai Z; Lai C; Zhu M; Li S; Wang J; Wang X
    Biotechnol Biofuels; 2013 Aug; 6(1):124. PubMed ID: 23985133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator.
    Lee HJ; Kim B; Kim S; Cho DH; Jung H; Bhatia SK; Gurav R; Ahn J; Park JH; Choi KY; Yang YH
    J Biotechnol; 2022 Nov; 359():21-28. PubMed ID: 36152769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion.
    Woo S; Lim HG; Han YH; Park S; Noh MH; Baek D; Moon JH; Seo SW; Jung GY
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):58. PubMed ID: 35614459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.
    Ouyang J; Cai C; Chen H; Jiang T; Zheng Z
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2387-97. PubMed ID: 23076574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions.
    Fernández-Sandoval MT; Galíndez-Mayer J; Bolívar F; Gosset G; Ramírez OT; Martinez A
    Microb Cell Fact; 2019 Aug; 18(1):145. PubMed ID: 31443652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli.
    Liu R; Liang L; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 Dec; 149():84-91. PubMed ID: 24096277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli.
    Liu A; Machas M; Mhatre A; Hajinajaf N; Sarnaik A; Nichols N; Frazer S; Wang X; Varman AM; Nielsen DR
    Biotechnol Bioeng; 2024 Feb; 121(2):784-794. PubMed ID: 37926950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an Inducible Secretory Expression System in Bacillus licheniformis Based on an Engineered Xylose Operon.
    Li Y; Jin K; Zhang L; Ding Z; Gu Z; Shi G
    J Agric Food Chem; 2018 Sep; 66(36):9456-9464. PubMed ID: 30129762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.
    Rahayu F; Tajima T; Kato J; Kato S; Nakashimada Y
    J Biosci Bioeng; 2020 Feb; 129(2):160-164. PubMed ID: 31506242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate.
    Um J; Kim DG; Jung MY; Saratale GD; Oh MK
    Bioresour Technol; 2017 Dec; 245(Pt B):1567-1574. PubMed ID: 28596073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.