These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29046966)

  • 41. First principal studies of spectroscopic (IR and Raman, UV-visible), molecular structure, linear and nonlinear optical properties of L-arginine p-nitrobenzoate monohydrate (LANB): A new non-centrosymmetric material.
    Shkir M; AlFaify S; Abbas H; Muhammad S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Aug; 147():84-92. PubMed ID: 25827769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of Li doping on the nonlinear optical properties of [2.2]paracyclophane.
    Sun G; Duan XX; Liu CG
    J Mol Model; 2016 Jan; 22(1):21. PubMed ID: 26733484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear optical behavior of Li n F (n = 2-5) superalkali clusters.
    Srivastava AK; Misra N
    J Mol Model; 2015 Dec; 21(12):305. PubMed ID: 26546265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Density functional theory (DFT) investigations on doped fullerene with heteroatom substitution.
    Dheivamalar S; Sugi L
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():687-95. PubMed ID: 26163793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Li2 trapped inside tubiform [n] boron nitride clusters (n=4-8): structures and first hyperpolarizability.
    Ma F; Zhou ZJ; Liu YT
    Chemphyschem; 2012 Apr; 13(5):1307-12. PubMed ID: 22378617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical Study on the Nonlinear Optical Property of Boron Nitride Nanoclusters Functionalized by Electron Donating and Electron Accepting Groups.
    Sutradhar T; Misra A
    J Phys Chem A; 2021 Apr; 125(12):2436-2445. PubMed ID: 33749280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of isomerization on nonlinear optical properties of molecules.
    Kinnibrugh T; Bhattacharjee S; Sullivan P; Isborn C; Robinson BH; Eichinger BE
    J Phys Chem B; 2006 Jul; 110(27):13512-22. PubMed ID: 16821878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory.
    Wang J; Han JG
    J Chem Phys; 2005 Dec; 123(24):244303. PubMed ID: 16396533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron transport and nonlinear optical properties of substituted aryldimesityl boranes: a DFT study.
    Pandith AH; Islam N
    PLoS One; 2014; 9(12):e114125. PubMed ID: 25479382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A DFT study of substituent effects in corannulene dimers.
    Josa D; Rodríguez Otero J; Cabaleiro Lago EM
    Phys Chem Chem Phys; 2011 Dec; 13(47):21139-45. PubMed ID: 22025308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one.
    Maidur SR; Patil PS; Ekbote A; Chia TS; Quah CK
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():342-354. PubMed ID: 28528255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The encapsulated lithium effect on the first hyperpolarizability of C60Cl2 and C60F2.
    Song YD; Wang L; Wu LM; Chen QL; Liu FK; Tang XW
    J Mol Model; 2016 Feb; 22(2):50. PubMed ID: 26841975
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters.
    Li L; Zhou Z; Wang X; Huang W; He Y; Yang M
    Phys Chem Chem Phys; 2008 Dec; 10(45):6829-35. PubMed ID: 19015787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A theoretical investigation on doping superalkali for triggering considerable nonlinear optical properties of Si
    Lin Z; Lu T; Ding XL
    J Comput Chem; 2017 Jul; 38(18):1574-1582. PubMed ID: 28378338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Charge transfer and first hyperpolarizability: cage-like radicals C59X and lithium encapsulated Li@C59X (X=B, N).
    Gao FW; Zhong RL; Sun SL; Xu HL; Zhao L; Su ZM
    J Mol Model; 2015 Oct; 21(10):258. PubMed ID: 26369918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study of absorption spectra and (hyper)polarizabilities of SiC(n) and Si(n)C (n=2-6) clusters using density functional response approach.
    Lan YZ; Feng YL
    J Chem Phys; 2009 Aug; 131(5):054509. PubMed ID: 19673576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical Study of the Substituent Effects on the Nonlinear Optical Properties of a Room-Temperature-Stable Organic Electride.
    Sun WM; Li XH; Li Y; Ni BL; Chen JH; Li CY; Wu D; Li ZR
    Chemphyschem; 2016 Dec; 17(23):3907-3915. PubMed ID: 27644001
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical, vibrational, NBO, first-order molecular hyperpolarizability and Hirshfeld surface analysis of a nonlinear optical chalcone.
    Aditya Prasad A; Muthu K; Meenatchi V; Rajasekar M; Agilandeshwari R; Meena K; Vijila Manonmoni J; Meenakshisundaram SP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():311-27. PubMed ID: 25615677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. First hyperpolarizability of a sesquifulvalene transition metal complex by time-dependent density-functional theory.
    Hieringer W; Baerends EJ
    J Phys Chem A; 2006 Jan; 110(3):1014-21. PubMed ID: 16420002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.