These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29047033)
1. Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture. Ferreira JR; Oliveira MC; de Azevedo-Marques PM J Digit Imaging; 2018 Aug; 31(4):451-463. PubMed ID: 29047033 [TBL] [Abstract][Full Text] [Related]
2. Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval. Ferreira JR; de Azevedo-Marques PM; Oliveira MC Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):509-517. PubMed ID: 27553081 [TBL] [Abstract][Full Text] [Related]
3. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance. Schwyzer M; Martini K; Benz DC; Burger IA; Ferraro DA; Kudura K; Treyer V; von Schulthess GK; Kaufmann PA; Huellner MW; Messerli M Eur Radiol; 2020 Apr; 30(4):2031-2040. PubMed ID: 31822970 [TBL] [Abstract][Full Text] [Related]
6. [Comparative analysis of computed tomography texture features between pulmonary inflammatory nodules and lung cancer]. E LN; Zhang N; Wang RH; Wu ZF Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):847-850. PubMed ID: 30481937 [No Abstract] [Full Text] [Related]
7. Applying a CT texture analysis model trained with deep-learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis. Wang Q; Xu S; Zhang G; Zhang X; Gu J; Yang S; Zeng M; Zhang Z J Appl Clin Med Phys; 2022 Nov; 23(11):e13759. PubMed ID: 35998185 [TBL] [Abstract][Full Text] [Related]
8. An Assisted Diagnosis System for Detection of Early Pulmonary Nodule in Computed Tomography Images. Liu JK; Jiang HY; Gao MD; He CG; Wang Y; Wang P; Ma H; Li Y J Med Syst; 2017 Feb; 41(2):30. PubMed ID: 28032305 [TBL] [Abstract][Full Text] [Related]
9. Classification of benign and malignant lung nodules from CT images based on hybrid features. Zhang G; Yang Z; Gong L; Jiang S; Wang L Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794 [TBL] [Abstract][Full Text] [Related]
10. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study. Wu G; Woodruff HC; Sanduleanu S; Refaee T; Jochems A; Leijenaar R; Gietema H; Shen J; Wang R; Xiong J; Bian J; Wu J; Lambin P Eur Radiol; 2020 May; 30(5):2680-2691. PubMed ID: 32006165 [TBL] [Abstract][Full Text] [Related]
11. Persistent Pure Ground-Glass Nodules Larger Than 5 mm: Differentiation of Invasive Pulmonary Adenocarcinomas From Preinvasive Lesions or Minimally Invasive Adenocarcinomas Using Texture Analysis. Hwang IP; Park CM; Park SJ; Lee SM; McAdams HP; Jeon YK; Goo JM Invest Radiol; 2015 Nov; 50(11):798-804. PubMed ID: 26146871 [TBL] [Abstract][Full Text] [Related]
12. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa DomÃnguez Hde J; Nandayapa Alfaro Mde J Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834 [TBL] [Abstract][Full Text] [Related]
13. Automated lung nodule classification following automated nodule detection on CT: a serial approach. Armato SG; Altman MB; Wilkie J; Sone S; Li F; Doi K; Roy AS Med Phys; 2003 Jun; 30(6):1188-97. PubMed ID: 12852543 [TBL] [Abstract][Full Text] [Related]
14. A decision tree model to distinguish between benign and malignant pulmonary nodules on CT scans. Ma XB; Xu QL; Li N; Wang LN; Li HC; Jiang SJ Eur Rev Med Pharmacol Sci; 2023 Jun; 27(12):5692-5699. PubMed ID: 37401307 [TBL] [Abstract][Full Text] [Related]
15. Texture feature analysis for computer-aided diagnosis on pulmonary nodules. Han F; Wang H; Zhang G; Han H; Song B; Li L; Moore W; Lu H; Zhao H; Liang Z J Digit Imaging; 2015 Feb; 28(1):99-115. PubMed ID: 25117512 [TBL] [Abstract][Full Text] [Related]
16. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. Zhang S; Sun F; Wang N; Zhang C; Yu Q; Zhang M; Babyn P; Zhong H J Digit Imaging; 2019 Dec; 32(6):995-1007. PubMed ID: 31044393 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Way TW; Sahiner B; Chan HP; Hadjiiski L; Cascade PN; Chughtai A; Bogot N; Kazerooni E Med Phys; 2009 Jul; 36(7):3086-98. PubMed ID: 19673208 [TBL] [Abstract][Full Text] [Related]
18. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system. Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
20. Toward Understanding the Size Dependence of Shape Features for Predicting Spiculation in Lung Nodules for Computer-Aided Diagnosis. Niehaus R; Raicu DS; Furst J; Armato S J Digit Imaging; 2015 Dec; 28(6):704-17. PubMed ID: 25708891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]